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ABSTRACT

This paper is taken from work completed by the first
author as a member of the 1999 Cornell University
Formula SAE Team and discusses several of the
concepts and methods of frame design, with an
emphasis on their applicability to FSAE cars. The paper
introduces several of the key concepts of frame design
both analytical and experimental. The different loading
conditions and requirements of the vehicle frame are
first discussed focusing on road inputs and load paths
within the structure. Next a simple spring model is
developed to determine targets for frame and overall
chassis stiffness. This model examines the frame and
overall chassis torsional stiffness relative to the
suspension spring and anti-roll bar rates. A finite
element model is next developed to enable the analysis
of different frame concepts. Some modeling guidelines
are presented for both frames in isolation as well as the
assembled vehicle including suspension. Finally,
different experimental techniques are presented to
determine what stiffness is actually achieved from a
constructed vehicle. A comparison of frames tested in
isolation versus whole vehicle testing is made, and a
simple whole-car chassis torsion test method is
discussed.

INTRODUCTION

This paper examines several aspects of vehicular frame
design, with an emphasis on application to an open-
wheeled, space-frame racecar chassis, as is used in
Formula SAE (FSAE). The FSAE competition is
sponsored by the Society of Automotive Engineers
(SAE).

Some key questions that have been raised from year to
year in designing FSAE cars at Cornell University are:
What is the best way to transfer the loads through the
structure? What are the deformation modes of the
structure? How stiff should the frame be in each of the
deformation modes? How does the frame stiffness
affect the dynamic response of the car? All of these
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questions are discussed to varying degrees in this
paper.

VEHICLE LOADING

The first step to designing a vehicle frame, or any
structure, is to understand the different loads acting on
the structure. The main deformation modes for an
automotive chassis are given in [8] as:

1. Longitudinal Torsion
2. Vertical Bending
3. Lateral Bending
4. Horizontal Lozenging

1. Longitudinal Torsion

)

Figure 1: Longitudinal Torsion Deformation Mode

Torsion loads result from applied loads acting on one or
two oppositely opposed corners of the car. The frame
can be thought of as a torsion spring connecting the two
ends where the suspension loads act. Torsional loading
and the accompanying deformation of the frame and
suspension parts can affect the handling and
performance of the car. The resistance to torsional
deformation is often quoted as stiffness in foot-pounds
per degree. This is generally thought to be the primary
determinant of frame performance for a FSAE racecar.



2. Vertical Bending

Figure 2: Vertical Bending Deformation Mode

The weight of the driver and components mounted to the
frame, such as the engine and other parts, are carried in
bending through the car frame. The reactions are taken
up at the axles. Vertical accelerations can raise or lower
the magnitude of these forces.

3. Lateral Bending

Figure 3: Lateral Bending Deformation Mode

Lateral bending loads are induced in the frame for
various reasons, such as road camber, side wind loads
and centrifugal forces caused by cornering. The side-
ways forces will act along the length of the car and will
be resisted at the tires. This causes a lateral load and
resultant bending.

4. Horizontal Lozenging

Figure 4: Horizontal Lozenging Deformation Mode

Forward and backward forces applied at opposite
wheels cause this deformation. These forces may be
caused by vertical variations in the pavement or the
reaction from the road driving the car forward. These
forces tend to distort the frame into a parallelogram
shape as shown in the figure.

It is generally thought that if torsional and vertical
bending stiffness are satisfactory then the structure will
generally be satisfactory. Torsional stiffness is generally
the most important as the total cornering traction is a
function of lateral weight transfer.

STRAIN GAUGE DATA

The magnitude of the loads mentioned in the proceeding
section changes with the operating mode of the car.
Based on over ten years of experience with Cornell
FSAE cars, parts designed to withstand both individual
and combined 3.5 g bump, 1.5 g braking and 1.5 g
lateral acceleration have been found to meet durability
requirements. Thus, these loads have to be considered
individually and together.

To verify these historical guidelines the 1998 Cornell Car
was instrumented with strain gauges on the major
suspension links. The strain gauge data was recorded
at 100 Hz while the car was driven through several
different representative tracks and situations. Some
data from a skid pad run is shown below.
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Figure 5: Strain Gauge Data

In one particular run the peak vertical force encountered
on the corner of the car was 450 pounds, which
corresponded to a vertical acceleration of 3.6 g’s,
assuming a 125 pound corner weight. This results in a
stress of 19 KSl in a 0.5 in diameter pull link with a 0.028
in wall thickness.

The strain gauge data can also be used to gain insight in
to the natural frequencies of the vehicle. This is
accomplished by transforming the data from the time
domain to the frequency domain and plotting the
response. Taking one of the data files a fast Fourier
transform was performed on the entire time history.
Then plotting the coefficients versus the appropriate
frequency we can observe spikes at the natural
frequency of the system. For the first sample plot, we
note a high-response at low frequencies, say below 2
Hz. There is another significant spike at roughly 5 Hz



and periodic spikes occurring at 8, 11, 15 Hz and so on.
If we compare this data to an ANSYS natural frequency
response prediction (albeit for a different car — the 1999
car), presented later, we observe the behavior is very
similar. The peak at 5 Hz is not present on the ANSYS
frequency response prediction. This suggests there may
be something not accounted for in the ANSYS analysis,
since the mass distribution and stiffness between the
two cars is fundamentally the same.
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Figure 6: Strain Gauge Data

One possible source for the 5 Hz spike is the input from
the rotationally unbalanced wheels. The strain gauge
data was collected while the car drove around the skid
pad. To check to see if the 5 Hz frequency is
approximately correct, we can calculate roughly what the
wheel frequency would have been on the skid pad. The
calculation is simply the velocity of the car divided by the
circumference of the wheel. Using an estimated car
velocities in the test we get a frequency range of
between 4-9 Hz. This shows that the peak around 5 Hz
could easily be the rotary unbalance force.

We can also check to see above what frequencies the
finite tire contact patch begins filtering out load inputs.
Using the contact patch size we can find that
frequencies over roughly 8 Hz should be filtered out for a
quickly moving car. This doesn’t account for engine or
driver excited resonance at higher frequencies, simply
the forcing done by the road on the car.

So, we see that generally, the 5 Hz spike can be
accounted for by the unbalanced wheels. To check this
hypotheis, a portion of the data was analyzed using the
FFT and following the same procedure as outlined
above. In this case, only the first few seconds were
analyzed. During this time the car was mostly at rest or
moving at only low speed. For this test we saw that the
5 Hz spike was missing, though the data was otherwise
very similar to before. The magnitude of the responses
were reduced, which makes sense given the lower force
inputs in the second case. Presumably better balancing

of the rotating components could reduce the exciting
forces acting at this frequency.

CHASSIS STIFFNESS TARGETS

With the loading conditions discussed above it should
now be possible to design the frame to be strong
enough not to fail under the global loads acting on it for
the different load cases. Just as importantly, however, is
the stiffness of the entire chassis structure that affects
the proper vehicle dynamics and handling. How stiff to
make the structure is extremely difficult to determine
empirically, and has to instead be based on experience
gathered mostly from driver feedback. One way to
approach the problem analytically is to examine how
much of the overall vehicle compliance occurs in the
structure compared to the deflections in the spring and
tire. Obviously for an infinitely rigid chassis the car will
respond only to the spring, damper and anti-roll bar
changes. Some stiffness approaching the infinite case,
then, should provide a stable platform for the suspension
to do its job. A simple math model to examine this
problem is to model the vehicle encountering a one
wheel bump.

DEVELOPMENT OF ONE WHEEL BUMP MODEL

To look at the relative contributions of the spring, tire,
suspension structure and frame structure we construct a
series spring model of the vehicle encountering a one
wheel bump. For beginning the model it is necessary to
determine how to combine the effects of both linear
springs (suspension springs) and torsion springs (frame
and other chassis contributions).

To begin developing the model consider two tubes or
other torsional members welded together, cantilevered
from a wall, and loaded in torsion as shown below.

Applied torgue
produces b
a deflection
Open-ended /%
hollow tube Fixed boundary

condition

Figure 7: Tubes in Series

Here the tubes are shown in series. The deflection that
occurs at the end of the assembly has a component
from each of the two tubes. The stiffness, then, is also a
function of the stiffness of each tube. If we use d to
represent the flexibility of each tube then the flexibility of
the system is just

diptal =d1+d3



The stiffness is the inverse of the flexibility, which for the
entire two-tube system can be found from

[ B
K total Ky Kp

Which is the generic equation of stiffness for springs in
series. If we had additional springs they would simply
be taken into account by another term at the end of the
equation. Another useful expression to model
suspension effects will be to find the equivalent torsional
stiffness for a linear spring at the end of a bar. A
diagram is shown below.

F
Figure 8: Linear to Torsion Spring

The diagram depicts a bar, pinned at one end, and
connected to a linear spring at the other. The spring is
fixed to ground at one end. From this information we
wish to find the equivalent torsional spring constant for
the system. For this calculation we need to find the
torque the linear force is producing about the joint, and
the angle the bar is moved through. While the diagram
shows the force, F, and the displacement, d, we in fact
know the spring constant, K. Knowing either K_or F
and d the other quantities can be calculated.

If we express K, the torsional spring stiffness, in units of
in-lbs/radian then the equivalent linear spring stiffness,
expressed in Ibs/in and approximated using the small
angle approximation is:

Kr=1? K,

It is also possible to convert from torsional to linear
spring stiffness in a similar manner. Performing the
analysis we would find the general equation is

Kr

Ky
12

I

Now that we can model both torsion and linear springs in
the same system, it is possible to build a model of all the
compliant members in an automotive chassis.
Depending on the desired complexity, different elements
can be included or ignored in the model. The simplest
model we will consider is to calculate the chassis
stiffness for a rigid frame and compliant springs. In this
model we assume the frame and suspension members
are all infinitely stiff, and only the actual suspension
springs themselves allow for any deflection. A picture of
this model is shown below.

Figure 9: Vehicle Stick Model — Compliant Springs

The load is applied at the front left wheel (positive x and
y direction). The other wheels are all constrained from
motion in the vertical direction. We are neglecting forces
and movement other than in the vertical direction,
though the actual constraints are shown above. If we
draw a free-body diagram of the model and solve using
the sum of forces and moments we can determine that
the changes in forces at all four wheels are equal. The
back right wheel force is of the same direction as the
applied load, while the other two wheels have their
forces acting in the opposite direction, or trying to hold
the car down. If we apply a force greater than the
weight on those two wheels we would lift our car frame
off the ground. For the purposes of this example, and in
real world testing, we can assume that we have added
weight to those corners to limit wheel lift. (The forces
and deflections we are considering are all differences
from the pre-existing forces/deflections that result from
the car supporting its own weight.)

Since the force applied at each wheel is equal, call it F,
the deflection of the spring at that wheel can be
calculated if we know the spring constant, by the simple
expression F=Kx. If we assume that each spring has
the same rate, then the deflection of each spring will be
equal. (If the springs have different rates, front/rear or
even side-to-side, the method will still yield accurate
results, but the relative motion of the nodes will change)
Note in the figure the node numbers given. We
constrained vertically three nodes, 1, 3 and 4. The four
springs representing the suspension at the four corners
of the car are all acting in series to resist the motion of
the left wheel, or node 2. Therefore, the total response
of the wheel, reacting against some applied load can be
found by the following expression:

1 1 1 + 1 1
K total Ky Ky K3 Ky

Here the subscripts simply denote each of the four
springs.

The next model to consider is to represent the torsional
compliance of the frame alone, a diagram of which is
shown below.



Figure 10: Vehicle Stick Model — Compliant Frame

In the above model a force applied at node 2, the
contact patch, causes a torsional deflection in the frame.
Since the other suspension elements are fixed, no other
deflections occur. All other nodes remain at their initial
position. Node 6 moves through a vertical deflection
corresponding to the equivalent linear rate of the frame
torsion spring. If the frame stiffness measured in fi-
Ibs/degree is equivalent to 100 Ibs/in, then from a 100Ib
load node 2 deflects 1”. It should be noted that the
angle of the bar connecting nodes 5 and 6 will change
during this condition, but we are considering only vertical
deflections at this time.

Now we can use the principal of superposition to show
that considering deflections from both the translational
suspension springs and the frame torsion spring
produces a deflection that is the sum of deflections
occurring in  each element. The spring-model
considering the suspension and frame springs is shown
below.

Figure 11: Vehicle Stick Model — Compliant Springs and Frame

The simple expression describing this behavior is as
follows:

1 1 1 1 1 1
K total Ky K, K3 K4 Ks

Note that K, is simply the spring constant of the torsion
springs. In order to use this equation we must use
consistent values of spring constants — either all
translational spring values or all torsion spring values.
We can convert back and forth by knowing the track and
using the expression developed earlier in this section.

The suspension members, such as wishbones and
rockers, also contribute compliance to the overall
chassis system. This could be shown graphically as
another torsion spring in series with the frame, and can
be included in our whole-car stiffness equation. Also,
note that we need to use the installed spring rate for
each suspension spring. This installed spring rate will
be the spring rate divided by the motion ratio squared.
The squared term arises because the motion ratio
affects both the force transmitted and the displacement
the spring moves through. (Conservation of energy is
one way to show the motion ratio must be squared.) A
mathematical description of the complete system, using
more description variable names is given below:

1 1 1 ">

- + + + ...
K chassis K frame K suspension K spring 1
2 2 2
7 r 7
2 + 3 + 4
K spring 2 K spring 3 K spring 4

The variable r in the above expression is the motion ratio
of the corresponding spring. Again, the units of spring
stiffness must be consistently measured in equivalent
stiffness for either a linear spring or rotary spring.

GRAPHICAL EXAMPLES

The model developed in the proceeding section allows
the overall chassis stiffness to be calculated by knowing
the spring rates of the frame, suspension structure and
the actual installed suspension spring, or wheel rate.
Selecting values of these elements for an actual design
is one of compromise and tradeoff. To assist in this
process example graphs are presented below to aid in
the initial decision making process. To efficiently show
these results and to make them general to any vehicle
we can normalize all the stiffness values by the vehicle
wheel rate. In this way the graphs can be used for any
vehicle by simply expression the spring, suspension and
frame stiffness as a ratio of the spring rate. Two graphs
are shown below with these normalized values. The top
graph presents the general case and the second graph
captures the region that will usually be of interest in
more detail. To use, simply cross reference the chassis
stiffness by the suspension structure stiffness and read
off the vehicle stiffness. These charts are constructed by
graphing two springs acting in series. The final point on
the graph for each series represents a rigid frame, so
the magnitude of the vehicle stiffness will always equal
the suspension stiffness. Additionally the case of rigid
suspension is shown which means the resulting vehicle
stiffness is equal to the chassis stiffness. The data
series labeled “equal” represents equal suspension and
chassis stiffness, which is convenient for maximizing the
structural efficiency of the chassis/suspension system
assuming relatively equal stiffness/weight ratios for both
components.
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Figure 12: Normalized Chassis Stiffness for Frame and Suspension Stiffness
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Figure 13: Normalized Chassis Stiffness for Varying Frame and Suspension Stiffness
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As an example of using the graph, say we desire a total
vehicle stiffness that is 90% of the rigid case. For a
chassis that is 10 times the wheel rate the suspension
structural stiffness has to be roughly 60 times the wheel
rate. For a chassis stiffness 20 times the wheel rate the
suspension has to be roughly 17 times as stiff as the
wheel rate. The charts are primarily useful for
visualizing the trends of vehicle stiffness relative to the
frame and suspension. For example if we know the
suspension stiffness is 30 times the wheel rate than the
graphs show that increasing the frame stiffness from 30
to 40 times the wheel rate only increases the vehicle
stiffness by 0.5%. In most cases the designer will
choose the reduced weight rather than that small an
increase in stiffness.

FINITE ELEMENT MODEL DEVELOPMENT

FRAME AND WHOLE CHASSIS MODELING

To begin our explanation, a solid model of the 1999 car
frame, drawn in Pro/Engineer with engine and wheels for
reference, is pictured

Figure 14: Vehicle Solid Model

The bare structural frame looks like the following:

Figure 15: Frame Solid Model

To determine the stiffness of a proposed frame and
chassis design before construction, a finite element
model can be constructed to calculate the structures
stiffness and strength. While the process of solving

Finite Element problems is a science, creating the
models is quite an art. There are many types of
elements possible for representing a structure and every
choice the analyst makes can affect the results. The
number, orientation and size of elements as well as
loads and boundary conditions are all critical to obtaining
meaningful values of chassis stiffness.

Conventionally, the frame is decomposed into nodes
and elements, with one element representing each tube
on the car. Nodes are placed wherever more tubes join.
Beam elements are normally used to represent each
tube. The assumption made in using beam elements is
that the welded tubes have stiffness in bending and
torsion. If a truss or link element were used, the
assumption being made would be the connections do
not offer substantial resistance to bending or torsion. By
examining various FSAE frames, we can see that while
they are usually reasonably well triangulated, if some
bending was not being resisted, some parts of many
frames would become mechanisms and deflect
substantially. Using beam elements to represent the
frame itself has given good results for Cornell FSAE cars
in the last few years. One other aspect of beam
elements is the possibility of including transverse
shearing effects. ANSYS automatically takes into
account transverse shear, if the appropriate variables
are included in the element definitions.

Another thing to consider when modeling just the frame
is how to represent the engine and stressed skins. For
the engine, the first step is to locate a node at each
position where there is an engine mount. These mounts
then need to be connected to the frame by an element
representing the tab and engine mount. Previous testing
has shown the engine to be very stiff relative to the car
frame and can be mounted as a stressed component to
reduce the frame weight. Testing has also shown that
deflections experienced in the engine are much less
than the bearing clearance and thus the engine is not
damaged by carrying chassis torsional loads. This was
true even for the 1993 Cornell car that was able to use
the engine as the primary load carrying structure,
because of the block design.

Thus, we can model the engine, assuming it to be
infinitely rigid, by connecting each engine mount node to
every other engine mount node by a beam element of
high stiffness. In 1998 the engine tab element
properties were modified until good agreement was
reached between the experiments and the model.
During the course of this project as the suspension was
modeled the maximum number of elements was
reached in the student version of ANSYS. One of the
few things that could be done to reduce the number of
elements was to replace the engine model just
discussed with a solid block of aluminum, still connected
to the frame by the engine tabs. This greatly reduced
the complexity of the ANSYS model and produced



results that were practically unchanged compared to the
other, multiple-tube engine model.

Stressed skins are much trickier to model than the
engine. In real life, the stressed skins are composed of
either 0.020” or 0.040” thick aluminum sheet bonded and
riveted to the space frame. The simplest model is to
connect a shear panel element from each of the four
nodes on a side of the front suspension bay. Placing the
stressed skins in the driver bay makes use of a
combination of three and four sided elements. Using this
method the analysis will usually predict a greater than
measured value of stiffness due to the realities of the
stressed skin installation which are not captured in the
model. This difference will vary from frame to frame but
from 20% to 50% of the predicted stiffness improvement
(skins installed versus no skins) can be lost.

In addition to modeling the stiffness contribution from
each part of the frame, we need to consider how to load
and constrain the frame for an accurate analysis. By an
accurate analysis we mean one that predicts the
stiffness of the frame close to the actual stiffness as the
frame operates in real world conditions. The problem
here has normally been how to constrain and load a
frame, as if it was receiving multiple load inputs from a
suspension, while it has been separated from that
suspension. In past years at Cornell, the back four
nodes of the rear bay had been pinned or completely
clamped depending on the year, and two equal and
opposite forces had been applied at the front top of the
front suspension bay. The problem with this boundary
condition is that the optimal solution found from the FE
analysis is to bring all triangulation to those pinned or
clamped boundary nodes. In the actual car the rear of
the car is supported at the tire/pavement interface, so
the actual optimal design should tie to the several
suspension pickup points rather than extreme edges of
the frame.

To better understand the actual load paths and gauge
the sensitivity of the design to boundary conditions it
was decided to determine the torsional stiffness of the
chassis for different loading assumptions. The first
boundary condition tested was to clamp the front of the
rear suspension bay, and see what affect that had on
the stiffness of the frame. This increased the overall
frame stiffness by several hundred foot-pounds per
degree. The reason was that the entire rear bay of the
car was virtually unloaded and barely deflecting. The
discrepancy in the results raised the question of which
model is more accurate? We knew that the model
agreed closely with the experiments, but that did not tell
us anything about if the experiments were representing
the actual loading of the frame. It quickly became
obvious the best way to settle the question was to model
the entire suspension. This way, the loads could be put
in as vertical wheel loads, and the other wheels could be
constrained in such as a way that the whole structure
was minimally constrained. Once the need to model the

suspension was decided upon, research began on the
best way to model the various suspension components.
The a-arms, pull-links and several other components
transmit tensile and compressive forces but no bending.
These are modeled in ANSYS as link members. The
uprights and connecting tabs are beams just like frame
tubes and engine mounts discussed earlier. The
hardest modeling consideration is the rockers.
Fortunately ANSYS includes an element known as a
revolute joint. This type of joint is found in a door hinge
or robot arm, and is a 1-axis joint. While highly
configurable, we consider this element only for its ability
to model a rigid connection in every direction except
about one axis. This represents a rocker very well, as
the rocker resists translating in all three directions, and
resists rotation in two directions. On the actual Cornell
1999 car the rocker consists of a pivot shaft connected
to two tabs. On this pivot shaft are two bearings, one at
either end. The rocker pivots on these bearing about the
pivot shaft. The bearings are fairly stiff, and any
deflection they have is highly nonlinear, so we want to
model them as a rigid joint. In ANSYS we set each
stiffness value of the rocker joint equal to a very large
value (say 1x10°) to guarantee the joints are not
deflecting substantially. This still allows deflection to
occur in the tab and rocker shaft, which is what we
desire. A table of the different element types as used in
the ANSYS model is given below.

ANSYS Element [Use

Type

Beam4 Round and Square Tubes, gussets,
tabs

Link8 Tension/Compression links such as
pull links or a-arms

Combin7 Joint for rocker

Combin14 Spring in suspension (can handle
damper as well)

Solid45 Solid block used for engine

Using these five elements we can model every load-
carrying component of the chassis. The suspension
model is only a model, however, and some of the
physical geometry has been simplified to make the
model easier to construct. For example, the offset
between the upright and pull link is a simple stiff beam,
which preserves the geometry and load paths, but fails
to account for the various actual pieces that are in-
between. In addition, no modeling of the wheel, hub or
spindle is included. All of these effects mean that the
ANSYS model is only an approximation to the real car
and will have to be considered when comparing the
results to the experimentally determined values.

In addition to modeling the torsional stiffness, this project
also considered the dynamic effect of the chassis, such
as the frame natural frequencies and vibration modes.
In this case the mass21 element was used to distribute



the mass of the car components over the frame. The
completed F.E. chassis model is shown below.

Figure 16: Vehicle Finite Element Model

DYNAMICS

In addition to the static characteristics of the chassis,
such as stiffness and strength, there are also dynamic
characteristics of interest in handling. One of these
dynamic characteristics is the natural frequency. It is
important to insure the natural frequencies of the
structure are greater than the frequencies of the various
load inputs. The simplest calculations we can perform to
estimate the natural frequency of a frame or chassis is to
assume the frame is a simple tube with two masses at
either end. Each of the masses has a moment of inertia,
I, and the center tube has stiffness, K. It is possible to
have an applied torque and angular deflection at each
end, call them T and 6, respectively. If we take the sum
of moments about the tube we find
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We can represent our variables in matrix form as

{9}={2}=[1]:[101 102}[1(]:{1(()1 Igj

Using standard processes for solving an eigenvalue
problem yields the characteristic equation as a second
order polynomial given by

The solution of the characteristic equation gives

0, = v-cos(wnt)
6, =v-sin (a)nt),

And the natural frequency is given by
ap=-2

To study a representative case consider a frame with
stiffness 1500 ft-Ibs/degree (366 kN m/rad) and two
masses with inertia 7 kg m®.  We find our natural
frequency is 230 rads/sec or 36 Hz. The rotating wheels
of the car cyclically load the frame and we wish to know
at what speed we reach the natural frequency. Knowing
the tire radius we can calculate the speed to reach the
natural frequency, 130 mph in this case. This gives a
safety factor of two, since maximum speed is usually
constrained to be below about 65 mph in FSAE events
due to track layout.

The above example shows some of the steps for solving
the very simple problem presented. We can imagine
that as we split the domain into a series of springs and
masses we get a better result. Taking very small pieces
we begin to reach a finite element analysis, which is the
subject of the next section.

The natural frequencies and mode shapes can be
calculated for the overall chassis by adding elements
representing the distributed mass present in the vehicle.
To begin with, we assume the mass of the car is
uniformly distributed throughout the frame tubes.
Performing a modal analysis we find the following
natural frequencies.

Hatural Frequencies of Freely Vibrating Chassis

O Springs=400 Ibsin
B Springs=1e10 Ibsfin

Frequency (Hz)

1 2 3 4 3 [ 7 g
|E| Springz=400 lhsin 8.7 100 | 127 | 125 | 226 | 408 [ 481 923
|I Springs=1e10 bsin [ 225 | 3341 406 | 450 | 494 | 515 | 537 | 567
Frequency Humber

Figure 17: Chassis Natural Frequencies



The mode shapes corresponding to the frequencies are
shown below:

Mode| Freq.
# (Hz) Mode Shape
Pure torsion between the front and
1 9.7 Jrear of the car

Rear Suspension "Flapping" - Vertical
motion at king pins with relatively fixed
2 10.0 |position at frame

Torsional mod with Suspension/Frame
3 12.7 out of phase

4 12.8 |Front Suspension "Flapping"

The “flapping” mode takes it name because it resembles
a bird in flight. A picture of the 10.0 Hz “flapping” mode
is shown below for the rear suspension

Figure 18: Chassis Free Vibrating Mode 2

A better mass distribution approximation is to represent
each component of the car with one or more mass
elements positioned correctly in car space. Larger
masses, such as the driver, were split into discreet point
masses and connected by rigid links to their mounting
points, such as the seat and seat belt mounts in the
case of the driver. The masses and positions were
tweaked until the center of gravity matched what was
measured in the lab. Interestingly, making a detailed
model and rerunning the modal analysis yielded very
similar results to the simple uniformly distributed mass
assumption for the global modes. The suspension mode
shifted when the springs were not rigid because of the
better approximation of the unsprung weight but
remained mostly unchanged when the springs were
rigidly modeled.

EXPERIMENTS
FRAME TORSION TEST
Once the frame is built it is important to verify the math

models and determine exactly what characteristics the
structure has achieved. A simple methodology and

analysis technique is presented below to determine
frame torsional stiffness.

Torsional loads, induced by an undulating road surface
or cornering forces are one of the most important and
highest magnitude loads transmitted through the frame.
To analyze the torsional rigidity of a car frame, a simple
model can be to assume one end of the car is fixed, and
the frame is a hollow tube, with a moment applied at one
end. This is shown schematically.

Applied Torque

Open Ended-Hollow
Tube

/'—

Fixed Boundary
Condition
Figure 19: Torsion Tube

This concept, when applied to the real car frame would
look like follows

Figure 20: Frame Finite Element Model Loading Case

The torsional rigidity can be calculated by finding the
torque applied to the frame (the tube) and dividing by the
angular deflection. The actual calculation is done as
follows, with the picture below showing a view looking
from the front of the suspension bay.
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Figure 21: Front Suspension Bay Testing Loads

The torque defined above is the product of the force
applied at one corner, and the distance from the point of
application to the centerline of the car. The deflection is
taken to be angle formed from the center of the car to
the position of the deflected corner. The reason both
deflections occur in the above equation is we take the
average of the left and right deflections to generate a
more accurate estimate of the total angular deflection.
The above example is rather difficult to produce in the
lab, because of the need to generate a vertical force
counter to the direction of gravity. It would be much
simpler to just hang a known weight on one corner of the
car and allow it to pivot about a roller. This method is
shown below.

Figure 22: Front Suspension Bay Testing Loads

In the above figure note that the lever arm is a tube
clamped to the frame at points A and B. A weight is then
hung from the end of the tube. The frame is supported
on its centerline by a roller at point c. The torque acting
on the car and resisted at the clamped rearbay is simply
the force, P, times the lever arm, L2. The angle of twist
can be simply calculated from the average deflection
and the half bay width or

0= tan_l M
L

Now we only have to use the definition of torsional
stiffness, and substitute in our expressions for the torque
and angular deflection.

k=L
)
P(L; +2Ly)

tan ~1| A4t Ap
Ly

This method of frame testing is relatively straightforward
and the advantage is the frame stiffness can be
determined  without including the  suspension
components. The primary disadvantage is the artificially
created load paths do not load the frame in the same
manner as on the track. Also, the choice of what rear
nodes to fix, and what front nodes to apply the load can
affect the results significantly. For this reason a whole
car chassis torsion test is the preferred method for
capturing the true venhicle stiffness.

K =

FULL CHASSIS TORSION TEST

A better way to assess the structures capabilities is to
twist test the entire chassis assembly. There are a
variety of methods to load a chassis in torsion. One of
these methods is discussed in [1]. This method involves
constructing a fixture with two jacks at the front of the
car, and two fixed supports at the rear. The two front
jacks are moved through an equal and opposite
displacement. Each of the four supports is equipped
with a load cell to output the force at each corner. One
advantages of this method is the car is put in pure
torsion, because the pivot point of the displacement is
aligned with the front end of the car. Additionally, the
supports provide near minimal-constraint that produces
a more accurate answer. While this method would be
quite nice, it involves constructing a test fixture, and this
fixture needs to then be secured to the ground.

Another method, and the method actually used to
acquire the data, uses the suspension corner weight
scales and camber plates. A picture of the testing setup
is shown below

Figure 23: Testing Setup for Front Left Corner



The camber plates are large aluminum plates that are
bolted to the hubs and usually used to set the camber
accurately. The corner weight scales are four load cell
scales that measure the weight on each corner of the
car. To conduct the test, first place all four camber
plates on the car. Next, configure the scales. The
scales should be placed so the car can later be placed
on top of them. A scissors jack is used to apply a
deflection at one corner of the car. Place the scissors
jack at one of the front corners (the driver’s left was used
for these tests) and spacers of the same height as the
fully retracted jack at the other three corners. With these
in place locate the car on the spacer/scale assembilies.
The next step is to locate dial indicators at all positions
to be tested. An indicator was located at the point of
application of the load — i.e. where the scissors jack
lifted the camber plate. The dial indicator was then
positioned to read off a suitable position of the
upright/hub. The distance between the front camber
plates was measured to calculate the torsional stiffness.

With the car securely located on the scales, and the jack
ready, stiffness can be tested. Frame testing over the
years has revealed very linear results for twist tests.
The frame is primarily a welded steel structure. Chassis
testing, however, has very high non-linearity in the early
stages. For small forces gaps in the suspension and
compression of various bearing elements occurs. As
these gaps are closed and bearing friction is overcome
the slope of the load deflection curve becomes linear.
For this reason, it is necessary to map the force-
displacement characteristic of the structure, rather than
finding one stiffness value. To get better data small
steps of load should be applied, and the corresponding
displacement measured. It is also interesting to note
that the force deflection curve has some hysteresis. To
accurately gauge this characteristic, it is helpful to add or
remove the load in finite steps and record the deflection.
This will build a load deflection “path” that rises and then
falls again. . At high loads the deflection is linear. This
represents the deformation of the elastic frame and
suspension members after gaps are closed. A sample
graph is shown below.

Force-Deflection Curve for Chassis Testing
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Figure 24: Twist Test Force-Deflection Curve

If we take a compilation of these graphs and present
only the linear region the results would look like the
following:

Force-Deflection Curve for Chassis Testing
Linear Region
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Figure 25: Twist Test Force-Deflection Curve Linear Region

Note in the above chart the force is applied through a
jack at the left wheel. All other wheels are fixed to
ground. It is clear from the chart that the point on the
chassis where the load is applied deflects the most. As
we move away from this point the deflections decrease,
as expected. To compare the relative motion of the



different points we can tabulate the values for all the
deflections at a point where the wheel has moved
vertically 0.100". Using the ANSYS chassis model that
was developed in section 8 of this paper, and applying a
0.100" deflection to the wheel, we are able to determine
the resulting deflection of the other points as well as the
force necessary to achieve these displacements.

A comparison of the ANSYS results and experimental
results is given below:

Applied
Displ. | Frame Front | Frame Back
Front Left
Wheel | Left | Right | Left | Right

ANSYS 0.100 |0.058| 0.044 | 0.011 | 0.002
Experiment | 0.100 |0.054| 0.046 | 0.007 | 0.001
Difference 7% -3% 47% 51%

Note that the experimental values were normalized to a
wheel deflection of 0.100" for ease of comparison. The
agreement between these two data sets is fairly high.
We see the largest difference is 0.004" while the
smallest is 0.001".  The variation in values is primarily
due to the simplified suspension model and
discrepancies in the ratio of the front and rear
suspension stiffness. This will be discussed in more
detail shortly. The large percentage errors at the rear of
the frame are due to the very small magnitude of the
measurements.

The above tests were all conducted with solid elements
in place of the shock absorbers. In the experiment these
consisted of aluminum tubes with rod ends in either end
and with the same length as the shock/spring at ride
height. In the ANSYS model the stiffnesses of the
spring elements was set to 1x10° pounds/in.

Using the experimental data we can now calculate the
stiffness of the chassis. The chassis stiffness in this
case will be the torsional stiffness, expressed in foot-lbs
per degree, of the frame and suspension. Note that this
value will be calculated with very stiff suspension
springs. To calculate the chassis stiffness we need to
know the front track and the force and deflection of the
front wheel. The following table shows the pertinent
values for our standard ANSYS model as well as the
experimental results:

AF | Ad [Track|Torque|Angle| Stiffness
Ibs | in in | ft-lbs | deg |ft-lbs/deg

Experiment |43.5/0.175] 44 | 159.5 |0.228 700
ANSYS
Model 100)0.262| 44 | 366.7 |0.342| 1073

The equations used to calculate the values in the chart
are as follows:

AF -Wheelbase _ [Ibs]-[in] — Lft]-[tbs]

Torque =T = AF -Wheelbase =
12 lin/ f1]
- Ad
Angle=6=tan”'| —— | =[de
"8 ( Wheelbasej [dee]
Stiffness = K = Torque/ Angle=T16 = M
[deg]

If a regression line is fitted to the Force-Deflection curve
a chassis stiffness value of 743 ft-lbs/deg is found. The
calculation differs by using the slope of the wheel force-
deflection curve as the chassis stiffness in pounds/inch.
This is then converted to a torsional value using the
track similarly to the above equations. Note that this
gives an average value for bump and rebound as the
curve is fitted between the high and low values of the
force-deflection path.

The difference between the experimental and
mathematical data, using 743 fi-lbs/deg as our
experimental value, is 330 ft-Ibs/degree or roughly 30%.
To understand where this error comes from we must
look at both the experimental setup and the
mathematical ANSYS model.

The experimental error can arise from several key areas:

1. Inaccuracy of the load cells within the chassis setup
scales used to measure the reaction loads

2. Gradual drift in the load cells

3. Inaccuracy of the dial indicators used to measure

deflection

Slipping of the dial indicator on its pickup point

Binding in the suspension, especially the camber

plates on the blocks

o s

To test for drift in the load cells a fixed weight was
placed on the scales and the corresponding reading was
measured over fixed intervals. It was found that the
reading held constant for several hours, much longer
than the time needed to record a force as the chassis
was twisted. To test for slipping the dial indicators were
observed throughout the test to confirm they were solidly
mounted.  Friction between the camber plates and
blocks was unavoidable in the present configuration.
Perhaps future tests could be conducted using the low-
friction supports used to test the steering system for
driver effort. The remaining two error sources,
specifically error in either the scales or indicator can be
estimated using the following procedure. Note we are
not considering the track measurement. An error in the
track measurement of even 1/8" makes only a 4 ft-lb/deg
difference in chassis stiffness.

To estimate the error we independently estimate the
error arising from the force measurement and the
displacement measurement. If we assume a Gaussian
distribution of error we can calculate the cumulative error
by the following equation:
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Here we are calculating the cumulative error by using a
root-mean-square addition of the error terms from each
aspect of the equation. Our Equation for chassis
stiffness, combining terms from the derivation earlier in
this section is as follows:

#) g
T ~ Froneel - L ~ 12 wheel

K =
chassis 9 (A (A
tan I tan a

calculating the tangent in degrees. Since we have to
take derivatives it becomes very convenient to make the
small angle approximation to the preceding equation. In
this case the chassis stiffness is given by
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where L, the track, is measured in inches. The
additional term in the denominator arises from
converting from radians to degrees. We now take partial
derivatives of stiffness with respect to the variables of F
and A.

K r-I?

9F  2160-A
K _ nFI?
A 2160 A2

If we assume the error in our measurements as follows

OF =+1
OA =£0.001

then writing out the individual terms for the summation
given above we find our error can be calculated directly
from the following equation

2 2
2 2
K= || ZE | | S E L 5A2 2279 fi-tbs ) deg
2160-A 2160- A%

Our error is shown above as 27.9 ft-lbs/deg or roughly
4% of 700 ft-Ibs/deg, the measured value. Analyzing the
numerical values of the error for each variable shows the
results are much more sensitive to errors in the scale
reading than in the dial indicator measurement. This
makes intuitive sense since a few thousandths out of a
quarter inch of travel is very small compared to even one
pound compared to a force of 50 Ibs. Using even
conservative estimates for our errors shows the chassis
stiffness values we are calculating are a reliable
estimation of the actual stiffness.

Looking next at the analytic model of the chassis, the
total error can be attributed to the individual errors in the
frame and suspension components. Since the frame
model was verified by twist-testing the frame alone, the
frame model should be accurate. The suspension
model, however, is a simplified model and should be
more stiff than the actual suspension. Hand calculations
on the links inserted to replace the spring/damper in the
experiments shows that their stiffness is close to the
modeled value of 1.0x10° pounds/in. Therefore the error
must be due primarily to the other elements of the
suspension, such as uprights, a-arms, gussets, tabs, rod
ends, and, of course, the hub and spindle assemblies
which are not modeled at all.

The overall suspension stiffness can be modeled a
variety of ways. Each of the individual components
could be modeled to calculate its actual stiffness, which
should then predict the reduced stiffness that was
measured in the lab. However, given the limited
experimental data consisting of the deflections of the
wheel and four points on the frame, the best approach
seemed to be modifying the overall suspension stiffness
until the model matched the experimental results. To
achieve this the suspension was assigned its own
material property. Initially the Young's Modulus of this
material is set to that of steel, or 30x10° psi, but is
gradually changed until the chassis stiffness matches
that measured by the twist tests. An equivalent
suspension Young's Modulus of 12x10° psi, found by
iteration yielded a good match, producing a chassis
stiffness of 740 ft-lbs/deg.

One other way to gauge in discrepancies between the
model and experiment is to measure twist along the
length of the frame. This will pinpoint the regions of the
structure where the deflections are different or similar to
the predicted values. An example of a plot showing the
deflections along the length, plotted by position is shown
below. The graph is made from the ANSYS results.
This type of chart can be made with either vertical
deflection or angular twist. The angular twist is a better
measure because when vertical deflection is plotted,
nodes that are farther from the center of twist will deflect
more vertically and appear as much larger values.
Angular deflection eliminates distance from the twist axis
as a variable.

In the chart below, notice how the graph is aligned to
match the plotted points to their corresponding node on
the frame graphic. Two lines are shown representing
the top and bottom of the car. The top and bottom
nodes will deflect different amounts due to the geometry
of the frame and forces acting to either push apart or pull
together the structure. The term bay spread is given to
this pushing/pulling force and deflection and has to be
taken into account to accurately gauge the structural
stiffness from the experiments.
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Figure 26: Deflection Along Vehicle Length

The slopes of the lines in different regions of the chart
show the relative effectiveness of each section of the
frame. Regions of high slope show where the majority
of the compliance is occurring. Data is included prior to
and after the bonding and attaching of the stressed
aluminum skins. As expected, the front and rear bays of
the car show a marked improvement in torsional
stiffness after bonding of the skins, while the cockpit
region shows a relatively fixed stiffness. This is because
the front bay in particular is designed to be fully
triangulated only with the skins in place, while the
cockpit region is a fully triangulated structure
independent of the stressed skins. The cockpit region
also has a relatively large cross sectional area
compared to the other parts of the car.

CONSIDERATION OF CHASSIS STIFFNESS FOR
OPTIMAL SUSPENSION OPERATION

The most accurate way to determine proper chassis
stiffness is through testing and experience. Teams that
have competed over several years gain experience
about which cars were tunable and what levels of
chassis stiffness were appropriate. Since the
suspension is designed around the assumption that the
frame and suspension components are rigid they need
to have stiffness values several times greater than the
compliant suspension members. One general rule of
thumb found in literature is a structural stiffness ten
times (one order of magnitude) greater than the spring
rates. Opinion differs, however, and some will express a
stiffness target in terms of a multiple of spring rate, tire
rate, wheel rate or a certain frequency. In the one wheel
bump model discussed in this paper it is usually feasible
to build a reasonable structure that has 90% of the
stiffness of theoretical rigid chassis. Higher values can
be obtained with further optimization or a weight penalty.

Given a 400 Ib/in spring and including the tire, the 1999
car frame and suspension stiffness is highly efficient
(91% of the rigid case). Currently lower spring rates are
used which for the same structure gives an even greater
efficiency. A 200 Ib/in spring increases the efficiency to
94%.

Cornell frames have varied in stiffness from 1000 ft-
Ibs/deg to 2000 ft-Ibs/deg over the last decade. The
table below presents some data. The values are those
quoted historically and do not represent a retest of old
cars. Variability between the tests is certain and could
be a large fraction of the total value. For that reason
values should be taken as only indicative of the actual
values.

Stiffness Weight K/W
Year ft-lbs/deg Ibs ft-lbs/deg/lb
1999 1600 57 28.1
1998 1600 57 28.1
1997 1600 58 27.6
1996 1400 60 23.3
1995 1000 60 16.7
1993 2000 50 40.0

Clearly, the 1993 car had an extremely efficient chassis,
and was an all around good performer with a first place
finish. It made use of the Honda CBR engine where the
other cars all employed the Yamaha FZR. The Honda
engine had different engine mounts that allowed for a
more fully stressed engine and reduced the weight of the
frame significantly. In addition to the '93 car the '97, '98
and '99 cars were all regarded as having good dynamic
performance and responded to tuning changes.

The historical data shows that Cornell frames have
recently clustered around 1600 ft-lbs/deg. Based on the
mathematical and antidotal data we can put the following
picture together:

1. Drivers of past cars which were below 1600 ft-
Ibs/deg stiffness often complained of flexibility and a
lack of suspension control — though it is difficult to
isolate this purely to lack of frame stiffness.

2. Weight savings for the earlier lower stiffness cars
compared to recent cars is not as significant as
might be imagined.

Just as important as the frame, and perhaps more
important, is the stiffness of the suspension links and
components. They factor in to the hub-to-hub torsional
stiffness but their compliance can drastically alter the
predicted kinematic motion of the tire. In order to
maintain the targeted camber, castor and toe behavior
the suspension links compliance has to be small in
magnitude relative to the kinematic component of the
motion. Trading off stiffness to weight is ultimately the
key to a successful racecar, but the recommendation
that arises from all this data taken together is that the



present value for frame stiffness of roughly 1600 ft-
Ibs/degree is a good compromise of stiffness, weight
and safety when coupled with a suspension structural
stiffness that is approximately equal. This achieves
efficiency relative to a rigid structure of around 90% in
one wheel bump.

CONCLUSION

This paper has considered a variety of issues related to
frame and chassis design with an emphasis on Formula
SAE cars. The different road loads and deformation
modes were considered as well as some generic design
targets based on experience and strain gauged
suspension links. A simple mathematical model was
developed for comparing the structural stiffness to the
suspension stiffness to gain insight into proper design
targets for the vehicle structure. These charts also aid in
visualizing the tradeoff between stiffness and weight the
designer must make. With these stiffness targets in
mind, a finite element model was constructed for both
the frame in isolation as well as the entire
chassis/suspension. This model was constructed and
analyzed in ANSYS. Finally, some experimental
methods were presented with an emphasis on the
whole-car torsion procedure. This method best captures
load paths, suspension contributions and is easily
performed by teams as they prepare for the competition.
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