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PART I: FUNDAMENTALS



Linearized Anisotropic Elasticity 1
1.1 Surface and internal forces

1.1.1 Traction vector

Let us consider a solid body that is subjected to external loads as shown in Fig. 1.1(a). In order to
characterize the intensity of internal forces at a point x, we section the body into two regions as shown
in Fig. 1.1(b). Let us consider a small area Δ0 on the section with unit outward normal n. The resultant

Figure 1.1: Forces acting on (a) a solid body and (b) a sectioned region of a solid body

force on the area Δ0 is denoted by ΔL. The traction vector f is defined as the resultant force per unit
area.

f (x, n) = lim
Δ0→0

ΔL

Δ0
(1.1)

The traction vector characterizes the intensity of the internal force acting on a surface. Note that, in
general, the traction vector depends on both the spatial location x and the unit normal n.

The traction vector is a force per unit area although it is usually represented by a single arrow for the
sake of convenience as shown in Fig. 1.2. In general, the traction vector f need not be parallel to the
unit normal n. It can be resolved into a component that is normal to the surface (normal traction) and a
component that is parallel to the surface (shear traction). It can be systematically shown that the traction
vector is an odd function of the normal vector. That is,

f (x,−n) = − f (x, n) (1.2)
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Figure 1.2: Representation of the traction vector as (a) a distributed load and (b) a single arrow

This is known as Cauchy’s Fundamental Lemma and is equivalent to Newton’s third law when applied
to the opposite surfaces of a sectioned body.

1.1.2 Stress tensor

Consider a surface with normal n passing through point x in an elastic body. The Cauchy stress theorem
states that there exists a second order tensor 2(x) called the Cauchy stress tensor that that relates the
normal vector n to the traction vector f acting on the surface.

f (x, n) = 2) (x) n (1.3)

This can be written in matrix notation as follows,


51

52

53

 =

f11 f21 f31

f12 f22 f32

f13 f23 f33



=1

=2

=3

 (1.4)

where f8 9 are the components of the Cauchy stress tensor. Consider a volume element 3E located at
point x in a body as shown in Fig. 1.3(a). The components of the traction vector f acting on the surfaces
of the element are obtained by substituting the components of the normal vector for each surface into
Eqn. 1.4. For example, the traction vector acting on surface with normal oriented parallel to the positive
G1-direction, i.e., {n} = [1 0 0]) is {t} = [f11 f12 f13]) . It can be shown using the balance of angular
momentum at a point that the Cauchy stress tensor is symmetric, i.e., f8 9 = f98 .

Equation (1.4) can be expressed in compact matrix notation as follows

{ f } = [2]{n} (1.5)

The Cauchy stress tensor 2 has units of #/<2 (i.e. Pa) or ;1 5 /8=2 (i.e. psi).
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Figure 1.3: (a) Element in an body that is subjected to loads and (b) stress components acting on a
volume element

1.2 Strain

Consider a material particle V that is initially located at x in the undeformed or reference configuration
as depicted in Fig. 1.4.

Figure 1.4: Deformation of an elastic body

The position vector of particle V in the deformed configuration is denoted by x′. The displacement
vector u of particle V is given by

u = x′ − x (1.6)

In general, the displacement vector u will vary from point to point, and it also depends on time C, i.e.,

u = u(x, C) (1.7)

In the case of quasi-static deformation, the position of a particle in the deformed configuration does not
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depend on time C and the displacement field is a function of the reference configuration coordinates

u = u(x) (1.8)

where u(x) is the displacement field.

The strain tensor characterizes the intensity of deformation at a point. In the case of small deformations,
the infinitesimal strain tensor 9 is evaluated as follows [1].

9 =
1
2

(
∇u + ∇) u

)
(1.9)

where ∇u is the gradient of the displacement field with respect to the spatial coordinates x and the
superscript ) denotes its transpose.

The infinitesimal strain tensor is a symmetric second-order tensor. In the case of a Cartesian coordinate
system, the components of the strain tensor are

9i j =
1
2

(
mD8

mG 9
+
mD 9

mG8

)
(1.10)

The six components of the strain tensor in a Cartesian coordinate system are Y11, Y22, Y33, Y12, Y23 and
Y13. The following are the three normal strains in the coordinate directions,

Y11 =
mD1

mG1
, Y22 =

mD2

mG2
, Y33 =

mD3

mG3
(1.11)

The strain components Y12, Y23 and Y13 are the tensorial shear strains in each of the three coordinate
planes

Y12 =
1
2

(
mD1

mG2
+ mD2

mG1

)
Y23 =

1
2

(
mD2

mG3
+ mD3

mG2

)
Y13 =

1
2

(
mD1

mG3
+ mD3

mG1

) (1.12)

The engineering shear strains W8 9 are twice the tensorial shear strains Y8 9 and are given by

W8 9 = 2Y8 9 (8 ≠ 9) (1.13)

The engineering shear strain W8 9 represents the reduction in angle between two material line elements
that were originally parallel to the G8 and G 9-axes in the undeformed configuration. The shear strain is
measured in radians.
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1.3 Coordinate transformation

The components of the displacement vector u, stress tensor 2 and the strain tensor 9 depend on the
coordinate system used for the analysis. If the components of a vector or tensor are known in one
coordinate system, the components in another coordinate system can be obtained through appropriate
vector and tensor transformation rules. Consider two orthonormal coordinate systems (G1, G2, G3) and
(G ′1, G ′2, G ′3) as shown in Fig. 1.5.

Figure 1.5: The primed and unprimed orthonormal coordinate systems

The two coordinate are related through the direction cosines matrix G, the elements of which are
defined as follows

�8 9 = cos(G ′8 , G 9) (1.14)

where cos(G ′
8
, G 9) represents the cosine of the angle between the coordinate axes G ′

8
and G 9 . For example,

�12 = cos(G ′1, G2) is the cosine of the angle between G ′1 and G2.

EXAMPLE 1.1: Direction cosine matrix

Consider two coordinate systems in which the G ′3 and G3 axes aligned in the same direction and the G ′1
is oriented at an angle \ relative to the G1 axis as shown in Fig. 1.6.

Figure 1.6: Orientation of the primed coordinate system relative to the unprimed coordinate system
for 2D tensor transformations
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In this case, the direction cosine matrix,

[�] =

cos(G ′1, G1) cos(G ′1, G2) cos(G ′1, G3)
cos(G ′2, G1) cos(G ′2, G2) cos(G ′2, G3)
cos(G ′3, G1) cos(G ′3, G2) cos(G ′3, G3)


=


cos(\) cos(90◦ − \) cos(90◦)

cos(90◦ + \) cos(\) cos(90◦)
cos(90◦) cos(90◦) cos(0◦)


(1.15)

which can be written as

[�] =

< = 0
−= < 0
0 0 1

 (1.16)

where < = cos \ and = = sin \.

1.3.1 Transformation of vectors

A vector, such as the displacement, can be written in terms of the components in either the primed or
the unprimed coordinate systems

u = D1e1 + D2e2 + D3e3 = D
′
1e

′
1 + D

′
2e

′
2 + D

′
3e

′
3 (1.17)

where D8 and D′
8

are the components of the vector u in the unprimed and primed coordinate system,
respectively. The components of a vector in the primed coordinate system can be obtained from the
components in the unprimed coordinate system using the direction cosines matrix as follows

{D′} = [�]{D} (1.18)

where {D′} and {D} are 3 × 1 column arrays of components in the primed and unprimed coordinate
system, respectively.

1.3.2 Transformation of second-order tensors

The components of a second-order tensor Z transform as follows between two different coordinate
systems

[) ′] = [�] [)] [�]) (1.19)
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where [)] and [) ′] are the components of the second-order tensor Z in the unprimed and primed
coordinate systems, respectively. Equation (1.19) can be expressed in component form as follows

) ′8 9 =
3∑
?=1

3∑
@=1

�8 ?� 9@)?@ (1.20)

1.4 Voigt notation

1.4.1 Stresses

In order to make it easier to perform the stress and strain transformation, we define the Voigt contracted
notation for the stress components

f1 ≡ f11, f2 ≡ f22, f3 ≡ f33

f4 ≡ f23, f5 ≡ f13, f6 ≡ f12
(1.21)

The contracted stress components can be arranged in the form of a column array as follows,

{2} =



f1

f2

f3

f4

f5

f6


=



f11

f22

f33

f23

f13

f12


(1.22)

1.4.2 Strains

The strain components are contracted in the following manner,

Y1 ≡ Y11, Y2 ≡ Y22, Y3 ≡ Y33

Y4 ≡ W23 ≡ 2Y23, Y5 ≡ W13 ≡ 2Y13, Y6 ≡ W12 ≡ 2Y12
(1.23)

where W8 9 are the engineering shear strains.
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The contracted strain components can be arranged in the form of a column array as follows,

{2} =



Y1

Y2

Y3

Y4

Y5

Y6


=



Y11

Y22

Y33

W23

W13

W12


(1.24)

1.5 Transformation of stresses and strains

1.5.1 Transformation of stress components

The components of the stress tensor transform as follows

[f′] = [�] [f] [�]) (1.25)

where [f] and [f′] are the components of the stress tensor 2 in the unprimed and primed coordinate
systems, respectively. Equation (1.25) can be expressed in component form as follows

f′8 9 =
3∑
?=1

3∑
@=1

�8 ?� 9@f?@ (1.26)

For example,

f′11 =

3∑
?=1

3∑
@=1

�1?�1@f?@

= �2
11f11 + �11�12f12 + �11�13f13

+ �12�11f21 + �2
12f22 + �12�13f23

+ �13�11f31 + �13�12f32 + �2
13f33

(1.27)

Using the Voigt contracted notation (1.21), the stress transformation relationship for f′11 in Eqn.1.27
can be expressed in terms of contracted stresses

f′1 = �
2
11f1 + �2

12f2 + �2
13f3 + 2�12�13f4 + 2�11�13f5 + 2�11�12f6 (1.28)

Using the Voigt contracted notation, the stress transformation Eqn. (1.26) can be written as
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{f′} = [)f]{f} (1.29)

where [)f] is the 6 × 6 stress transformation matrix

[)f] =



�2
11 �2

12 �2
13 2�12�13 2�13�11 2�11�12

�2
21 �2

22 �2
23 2�22�23 2�23�21 2�21�22

�2
31 �2

32 �2
33 2�32�33 2�33�31 2�31�32

�21�31 �22�32 �23�33 �22�33 + �23�32 �21�33 + �23�31 �22�31 + �21�32

�31�11 �32�12 �33�13 �12�33 + �13�32 �13�31 + �11�33 �11�32 + �12�31

�11�21 �12�22 �13�23 �12�23 + �13�22 �13�21 + �11�23 �11�22 + �12�21


(1.30)

whose �8 9 are the components of the direction cosines matrix.

1.5.2 Transformation of strain components

The components of the strain tensor transform as follows

[Y′] = [�] [Y] [�]) (1.31)

where [Y] and [Y′] are the components of the strain tensor 9 in the unprimed and primed coordinate
systems, respectively. The Y1 component of the strain tensor transforms as follows

Y′1 = �
2
11Y1 + �2

12Y2 + �2
13Y3 + �12�13Y4 + �11�13Y5 + �11�12Y6 (1.32)

This can be written as

{Y′} = [)Y]{Y} (1.33)

where [)Y] is the 6 × 6 strain transformation matrix

[)Y] =



�2
11 �2

12 �2
13 �12�13 �13�11 �11�12

�2
21 �2

22 �2
23 �22�23 �23�21 �21�22

�2
31 �2

32 �2
33 �32�33 �33�31 �31�32

2�21�31 2�22�32 2�23�33 �22�33 + �23�32 �21�33 + �23�31 �22�31 + �21�32

2�31�11 2�32�12 2�33�13 �12�33 + �13�32 �13�31 + �11�33 �11�32 + �12�31

2�11�21 2�12�22 2�13�23 �12�23 + �13�22 �13�21 + �11�23 �11�22 + �12�21


(1.34)
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The strain transformation matrix [)Y] is related to the stress transformation matrix [)f] as fol-
lows

[)Y] = [)f]−) (1.35)

EXAMPLE 1.2: 2D Coordinate transformation

In the case of a 2D coordinate transformation corresponding to a rotation of the coordinate system
about the G3-axis by an angle \ shown in Fig. 1.6 the direction cosines matrix is (refer Eqn. (1.16))

[�] =

< = 0
−= < 0
0 0 1

 (1.36)

where < = cos \ and = = sin \. The stress transformation matrix for 2D coordinate transformation
is obtained by substituting the components of the direction cosines matrix (1.36) into the stress
transformation matrix (1.30)

[)f] =



<2 =2 0 0 0 2<=
=2 <2 0 0 0 −2<=
0 0 1 0 0 0
0 0 0 < −= 0
0 0 0 = < 0
−<= <= 0 0 0 (<2 − =2)


(1.37)

The strain transformation matrix for 2D coordinate transformations, obtained from (1.34) and (1.36) is

[)Y] =



<2 =2 0 0 0 <=

=2 <2 0 0 0 −<=
0 0 1 0 0 0
0 0 0 < −= 0
0 0 0 = < 0
−2<= 2<= 0 0 0 (<2 − =2)


(1.38)



1 Linearized Anisotropic Elasticity 12

1.6 Constitutive equations

1.6.1 Elastic stiffnesses

The generalized Hooke’s law for an anisotropic material is expressed as

f8 9 =

3∑
:=1

3∑
;=1

�8 9:;Y:; (1.39)

where �8 9:; are elastic constants which depend on the material. �8 9:; are the components of a fourth-
order tensor known as the elastic stiffness tensor. Since the stress and strain tensors are symmetric, the
stiffness tensor exhibits the following symmetries,

�8 9:; = � 98:; = �8 9;: (1.40)

In contracted notation, Eqn. (1.39) can be written as

f? =

6∑
@=1

�?@Y@ (1.41)

where �?@ are the elastic stiffnesses in contracted notation with

�?@ = � 8 9
⌣
:;
⌣

(1.42)

and indices ? and @ are the Voigt contractions of 8 9 and :;, respectively,

8 9 or :; ↦→ ? or @

11 1
22 2
33 3

23 or 32 4
13 or 31 5
12 or 21 6
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The stress-strain relationships (1.41) can be expressed in matrix form as

f1

f2

f3

f4

f5

f6


=



�11 �12 �13 �14 �15 �16

�21 �22 �23 �24 �25 �26

�31 �32 �33 �34 �35 �36

�41 �42 �43 �44 �45 �46

�51 �52 �53 �54 �55 �56

�61 �62 �63 �64 �65 �66





Y1

Y2

Y3

Y4

Y5

Y6


(1.43)

Eqn. (1.43) can be written in compact form as

{2} = [�] {9} (1.44)

where [�] is a 6 × 6 matrix and is known as the elastic stiffness matrix.

1.6.2 Elastic Compliances

Hooke’s law for an anisotropic material can be written in the alternate form,

{Y} = [(] {f} (1.45)

where [(] is a 6 × 6 matrix and is known as the elastic compliance matrix. The compliance matrix is the
inverse of the stiffness matrix, i.e.

[(] = [�]−1 (1.46)

Eqn. (1.45) can be written in component form as

Y1

Y2

Y3

Y4

Y5

Y6


=



(11 (12 (13 (14 (15 (16

(21 (22 (23 (24 (25 (26

(31 (32 (33 (34 (35 (36

(41 (42 (43 (44 (45 (46

(51 (52 (53 (54 (55 (56

(61 (62 (63 (64 (65 (66





f1

f2

f3

f4

f5

f6


(1.47)
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1.6.3 Strain energy density

The strain energy density* is the elastic potential energy stored per unit volume due to deformation.

* =
1
2

3∑
8=1

3∑
9=1

f8 9Y8 9 =
1
2

6∑
8=1

f8Y8

=
1
2
{f}) {Y} = 1

2
{Y}) {f}

(1.48)

Substitution of the stress f from Hooke’s law (1.44) into (1.48), gives

* =
1
2
( [�]{Y})) {Y} = 1

2
{Y}) ( [�]{Y}) (1.49)

which implies that the following relationship must hold for all strains,

1
2
{Y}) [�]) {Y} = 1

2
{Y}) [�]{Y}

1
2
{Y})

(
[�]) − [�]

)
{Y} = 0

[�]) = [�]

(1.50)

In other words, the 6 × 6 elastic stiffness matrix is symmetric, i.e., �8 9 = � 98 .

[�] =



�11 �12 �13 �14 �15 �16

�12 �22 �23 �24 �25 �26

�13 �23 �33 �34 �35 �36

�14 �24 �34 �44 �45 �46

�15 �25 �35 �45 �55 �56

�16 �26 �36 �46 �56 �66


(1.51)

In general, there are 21 independent elastic constants for an elastic material. Since the elastic stiffness
matrix [�] is symmetric, its inverse, the elastic compliance matrix [(], is also symmetric and can be
written as

[(] =



(11 (12 (13 (14 (15 (16

(12 (22 (23 (24 (25 (26

(13 (23 (33 (34 (35 (36

(14 (24 (34 (44 (45 (46

(15 (25 (35 (45 (55 (56

(16 (26 (36 (46 (56 (66


(1.52)

1.7 Transformation of elastic stiffnesses and compliances

The constitutive equation (1.44) in the unprimed coordinate system is transformed to the primed
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coordinate system as follows,

{f} = [�]{ Y}

[)f]−1{f′} = [�] [)Y]−1{Y′}

{f′} = [)f] [�] [)Y]−1{Y′}

= [)f] [�] [)f]) {Y′}

(1.53)

which can be written as
{f′} = [� ′]{Y′} (1.54)

where [� ′] is the elastic stiffness matrix in the primed coordinate system

[� ′] = [)f] [�] [)f]) (1.55)

Similarly, it can be shown that the elastic compliance matrix transforms as follows

[(′] = [)Y] [(] [)Y]) (1.56)

1.8 Material symmetry

In the most general case, an anisotropic elastic material has 21 independent material constants. How-
ever, it may have fewer independent elastic constants if it exhibits symmetries.

1.8.1 Monoclinic materials

Monoclinic materials have one plane of reflectional symmetry. Consider a monoclinic material that
exhibits reflectional symmetry about the G1 − G2 coordinate plane. Let’s assume that it subjected to an
axial strain Y1 and a shear strain Y5(= W13) as depicted in Fig. 1.7(a) with all other strain components
being zero.
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Figure 1.7: Monoclinic material subjected to normal strain in the G1 direction and shear strain in the
G1 − G3 plane (a) prior to reflection and (b) after reflection

The strain energy density (1.48) can be written in terms of strain components,

* =
1
2

6∑
?=1

f?Y? =
1
2

6∑
?=1

6∑
@=1

�?@Y?Y@ (1.57)

The strain energy density corresponding to the deformation in Fig. 1.7(a) is

* =
1
2
�11Y

2
1 +�15Y1Y5 +

1
2
�55Y

2
5 (1.58)

Next, the material is reflected about its symmetry plane and subjected to the same deformation, as
shown in Fig. 1.7(b). The strain energy density is unaffected since the material has been reflected about
its symmetry plane prior to deformation. Thus,

* =
1
2
� ′11(Y

′
1)2 +� ′15Y

′
1Y
′
5 +

1
2
� ′55(Y

′
5)

2 (1.59)

The elastic stiffnesses remain the same when a monoclinic material is reflected about its symmetry
plane. In addition, the normal strain in the reflected coordinate system remains the same while the
shear strain changes sign, i.e., Y′1 = Y1 and Y′5 = −Y5. Therefore, the strain energy density

* =
1
2
�11Y

2
1 +�15Y1(−Y5) +

1
2
�55(−Y5)2

=
1
2
�11Y

2
1 −�15Y1Y5 +

1
2
�55Y

2
5

(1.60)

Subtracting (1.60) from (1.58) gives
2�15Y1Y5 = 0 (1.61)

Since this result has to hold true for all Y1 and Y5, we infer that the elastic stiffness �15 = 0. Using a
similar argument, it can be shown that �14 = �24 = �25 = �34 = �35 = �46 = �56 = 0 for monoclinic
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materials. Thus, the elastic stiffness matrix [�] reduces to

[�] =



�11 �12 �13 0 0 �16

�12 �22 �23 0 0 �26

�13 �23 �33 0 0 �36

0 0 0 �44 �45 0
0 0 0 �45 �55 0
�16 �26 �36 0 0 �66


(1.62)

A monoclinic material has 13 independent material constants.

1.8.2 Orthotropic materials

Orthotropic materials have three orthogonal planes of reflection symmetry and the elastic stiffness
matrix has the following form

[�] =



�11 �12 �13 0 0 0
�12 �22 �23 0 0 0
�13 �23 �33 0 0 0
0 0 0 �44 0 0
0 0 0 0 �55 0
0 0 0 0 0 �66


(1.63)

Orthotropic materials have 9 independent material constants.

1.8.3 Transversely isotropic materials

Transversely isostropic materials exhibit rotational symmetry about an axis as shown in Fig. (1.8).

Figure 1.8: Transversely isotropic material
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The elastic stiffness matrix has the following form if a material exhibits rotational symmetry about the
G1 axis,

[�] =



�11 �12 �12 0 0 0
�12 �22 �23 0 0 0
�12 �23 �22 0 0 0
0 0 0 �44 0 0
0 0 0 0 �66 0
0 0 0 0 0 �66


(1.64)

Note: �44 =
1
2 (�22 −�23). Transversely isotropic materials have 5 independent material constants.

1.8.4 Isotropic materials

[�] =



�11 �12 �12 0 0 0
�12 �11 �12 0 0 0
�12 �12 �11 0 0 0
0 0 0 �66 0 0
0 0 0 0 �66 0
0 0 0 0 0 �66


(1.65)

where �66 =
1
2 (�11 −�12). Isotropic materials have 2 independent material constants.

1.9 Engineering constants

Consider an orthotropic material with reflectional symmetry about the coordinate planes.

(a) When an orthotropic material is subjected to a normal stress f1 with all other stresses being zero,
the normal strain in the G1 direction is

Y1 =
f1

�1
(1.66)

where �8 is the Young’s modulus in the G8- direction. The Poisson’s ratio is defined as

a8 9 = −
Y 9

Y8
when subjected to stress f8 (1.67)

When subjected to a stress f1, the Poisson’s ratio a12 is defined as

a12 = −
Y2

Y1
(1.68)
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Thus the transverse normal strain Y2 induced by the normal stress f1 is

Y2 = −a12Y1 = −a12
f1

�1
= −a12

�1
f1 (1.69)

Similarly, the transverse normal strain Y3 is

Y3 = −a13
f1

�1
= −a13

�1
f1 (1.70)

When an orthotropic material is subjected to a normal stress f2 with all other stresses being zero, the
normal strains induced are

Y1 = −
a21

�2
f2, Y2 =

f2

�2
, Y3 = −

a23

�2
f2 (1.71)

Similarly, when an orthotropic material is subjected to a normal stress f3 with all other stresses being
zero, the normal strains induced are

Y1 = −
a31

�3
f3, Y2 = −

a32

�3
f3, Y3 =

f3

�3
(1.72)

When subjected to all three normal stresses, the normal strains are

Y1 =
1
�1
f1 −

a21

�2
f2 −

a31

�3
f3

Y2 = −
a12

�1
f1 +

1
�2
f2 −

a32

�3
f3

Y3 = −
a13

�1
f1 −

a23

�2
f2 +

1
�3
f3

(1.73)

(b) When an orthotropic material is subjected to a shear stress g23, the shear strain

W23 =
g23

�23
(1.74)

where �23 is the shear modulus in the G2 − G3 plane. This relationship can be written in contracted
notation as follows

Y4 =
1
�23

f4 (1.75)

Similarly, the other shear strains are

Y5 =
1
�13

f5

Y6 =
1
�12

f6

(1.76)

where �13 and �12 are the shear moduli in the G1 − G3 and G1 − G2 planes, respectively. Equations
(1.73),(1.75), (1.76) can be combined into a single matrix equation as follows
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

Y1

Y2

Y3

Y4

Y5

Y6


=



1
�1

− a21
�2
− a31
�3

0 0 0
− a12
�1

1
�2

− a32
�3

0 0 0
− a13
�1
− a23
�2

1
�3

0 0 0
0 0 0 1

�23
0 0

0 0 0 0 1
�13

0

0 0 0 0 0 1
�12





f1

f2

f3

f4

f5

f6


(1.77)

The 6 × 6 matrix in (1.77) is the compliance matrix [(] in terms of the nine engineering constants. Since
the compliance matrix is symmetric,

a12

�1
=
a21

�2
(1.78)

Similar relationships exist that relate the other Poisson’s ratios and the Young’s moduli,

a8 9

�8
=
a 98

� 9
, 8 ≠ 9 (1.79)

Equations (1.79) are known as the reciprocity relations. Note that a12 ≠ a21 if �1 ≠ �2. In general, a21 and
a12 are different but a21 can be calculated from a12 and the Young’s moduli �1 and �2.

An orthotropic material has a total of 9 engineering constants, namely �1, �2, �3, a12, a13, a23, �12,
�13 and �23. The elastic compliances for an orthotropic material can be expressed in terms of the
engineering constants as

(11 =
1
�1

, (12 = −
a12

�1
, (13 = −

a13

�1
,

(22 =
1
�2

, (23 = −
a23

�2
, (33 =

1
�3

,

(44 =
1
�23

, (55 =
1
�13

, (66 =
1
�12

(1.80)

The stiffness matrix [�] can be obtained by inverting the 6 × 6 compliance matrix [(].

[�] = [(]−1 (1.81)

A transversely isotropic material is a special case of an orthotropic material. The engineering constants
in the case of a transversely isotropic material with rotational symmetry about the G1 axis are

�1, �2 = �3, a12 = a13, a23,

�12 = �13, �23 =
�2

2(1 + a23)
(1.82)
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The compliance matrix can be written in terms of the 5 independent constants of a transverely isotropic
material

[(] =



1
�1

− a12
�1
− a12
�1

0 0 0
− a12
�1

1
�2

− a23
�2

0 0 0
− a12
�1
− a23
�2

1
�2

0 0 0
0 0 0 2(1+a23)

�2
0 0

0 0 0 0 1
�12

0
0 0 0 0 0 1

�12


(1.83)

In the case of an isotropic material,

�1 = �2 = �3 = � , a12 = a13 = a23 = a,

�12 = �13 = �23 = � =
�

2(1 + a)
(1.84)

[(] =



1
�
− a
�
− a
�

0 0 0
− a
�

1
�
− a
�

0 0 0
− a
�
− a
�

1
�

0 0 0
0 0 0 2(1+a)

�
0 0

0 0 0 0 2(1+a)
�

0
0 0 0 0 0 2(1+a)

�


(1.85)

1.10 Representative material properties

In this course, we will consider laminated composite structures composed of carbon fiber-reinforced
plies in all the exercises and assignments

1.10.1 Unidirectional carbon fiber-reinforced composite

and we will use a unidirectional carbon fiber-reinforced composite consisting of continuous IM7 fibers
embedded in a 8552 epoxy matrix in the examples. The properties of the matrix, the fiber and the
unidirectional fiber-reinforced composite are listed below.

The 8552 epoxy matrix is an isotropic material with the following properties

d< = 1300 kg/m3, �< = 4.67 GPa, a< = 0.37, �< =
�

2(1 + a) = 1.70 GPa (1.86)

where d< is the mass density and the subscript < denotes matrix properties.



1 Linearized Anisotropic Elasticity 22

The IM7 carbon fibers are transversely isotropic with the following properties,

d 5 = 1780 kg/m3, �1 5 = 276 GPa, �2 5 = �3 5 = 15 GPa,

a12 5 = a13 5 = 0.29, a23 5 = 0.30,

�12 5 = �13 5 = 15 GPa, �23 5 =
�2 5

2(1 + a23 5 )
= 5.77 GPa

(1.87)

where the subscript 5 denotes fiber properties.

The effective properties of the IM7/8552 unidirectional fiber-reinforced composite are obtained using
the asymptotic expansion homogenization (AEH) method. It uses a representative volume element
with a hexagonal arrangement of IM7 fibers in a 8552 epoxy matrix. The AEH equations are solved
numerically using the finite element method subject to periodic boundary conditions. The effective
engineering elastic properties of the IM7/8552 unidirectional fiber-reinforced composite are listed
below for a fiber volume fraction of 60%, i.e., + 5 = 0.6.

d = 1588 kg/m3, �1 = 167.4 GPa, �2 = �3 = 9.5 GPa,

a12 = a13 = 0.33, a23 = 0.44,

�12 = �13 = 4.8 GPa, �23 =
�2

2(1 + a23)
= 3.3 GPa

(1.88)

The strengths of IM7/8552 unidirectional fiber-reinforced composite are listed below

�1C = 2, 700 MPa, �12 = 1, 700 MPa, �2C = 70 MPa,

�22 = 200 MPa, �6 = 90 MPa
(1.89)

where �1C is the longitudinal tensile strength, �12 is the longitudinal compressive strength, �2C is the
transverse tensile strength, �22 is the transverse compressive strength and �6 is the in-plane shear
strength.

1.10.2 Fabric-reinforced composite laminae

In some of the exercises, we will use fabric reinforced carbon/epoxy composite laminae whose
representative engineering properties are listed below.

d = 1600 kg/m3, �1 = 77.0 GPa, �2 = 75.0 GPa, a12 = 0.06, �12 = 6.5 GPa (1.90)

where the 1-axis is the warp direction and the 2-axis is the weft/fill direction.
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The representative strengths of the fabric-reinforced carbon/epoxy composite laminae are listed below,

�1C = 963 MPa, �12 = 900 MPa, �2C = 856 MPa,

�22 = 900 MPa, �6 = 71 MPa
(1.91)

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and the
representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites.

1.1 Consider an G ′-H′-I′ coordinate system whose basis vectors e′1, e′2 and e′3 are oriented in the di-
rections {1/

√
2, 1/
√

2, 0}, {−1/2, 1/2, 1/
√

2} and {1/2,−1/2, 1/
√

2}, respectively, relative to the G-H-I
coordinate system.

(a) Determine the stress transformation matrix [)f].
(b) If at a point in a composite structure the stresses in the G-H-I coordinate system are

fG = 100 MPa, fH = −100 MPa, fI = 80 MPa,

gHI = 5 MPa, gGI = 10 MPa, gGH = 20 MPa

determine the stresses in the G ′-H′-I′ coordinate using the stress transformation matrix [)f].

1.2 Consider an G ′-H′-I′ coordinate system whose basis vectors e′1, e′2 and e′3 are oriented in the di-
rections {1/

√
2, 1/
√

2, 0}, {−1/2, 1/2, 1/
√

2} and {1/2,−1/2, 1/
√

2}, respectively, relative to the G-H-I
coordinate system.

(a) Determine the strain transformation matrix [)Y].
(b) If at a point in a composite structure the strains in the G-H-I coordinate system are

YG = 1000 `Y, YH = −1500 `Y, YI = 500 `Y,

WHI = 100 `rad, WGI = 300 `rad, WGH = 800 `rad

determine the strains in the G ′-H′-I′ coordinate using the strain transformation matrix [)Y].

1.3 The homogenized (or effective) engineering properties of a unidirectional fiber-reinforced compos-
ite are listed in Sec. 1.10.1 for a fiber volume fraction + 5 = 0.6. Determine the 6 × 6 elastic stiffness
matrix [�] of the unidirectional fiber-reinforced composite in GPa.
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1.4 Consider the unidirectional fiber-reinforced composite whose elastic stiffness matrix [�] was
determined in Problem 1.3. The fibers are oriented in the 1-direction as shown in the figure below
where the angle \ = 45◦.

(a) Determine the components of the 6 × 6 elastic stiffness matrix (in GPa) in the G-H-I coordinate
system.

(b) If the composite material is subjected to a stress fG = 100 MPa (all other stresses are zero),
determine the strains in the G-H-I coordinate system in `Y. Is the shear strain WGH = 0? If not,
provide a physical explanation for the shear strain when the material is subjected to a normal
stress.

(c) If the composite material is subjected to stresses fG = −100 MPa and gGH = 50 MPa (all other
stresses are zero), determine the strain energy density* in kJ/m3



Mechanics of a Lamina 2
2.1 Plane stress assumption

Laminated composite structures (or laminates) are typically thin-walled structures that are composed
of multiple laminae. When a laminate is subjected to loads, the out-of-plane stress components g13,
g23 and f3 in the laminae are much smaller than the in-plane stress components f1, f2 and g12. We
therefore neglect the out-of-plane stress components when analyzing thin-walled laminated composite
structures. This is known as the plane stress assumption and can be formally stated as

f3 = g23 = g13 = 0 (2.1)

The plane stress assumption greatly simplifies the analysis since we need to calculate only the in-plane
stress components, namely the normal stresses f1, f2 and the shear stress g12, shown in Fig. 2.1.

Figure 2.1: Stresses acting on a lamina in plane stress

The in-plane strain components are obtained by setting the out-of-plane stress components f3, f4 (i.e.,
g23), and f5 (i.e., g13) to zero in the right hand side of Eqn. (1.77)


Y1

Y2

W12

 =


1
�1

− a12
�1

0
− a12
�1

1
�2

0
0 0 1

�12



f1

f2

g12

 (2.2)

where we have utilized the reciprocity relations (1.78) to relate the Poisson’s ratio a21 to a12, i.e., a21

= a12�2/�1. In the plane stress assumption, the in-plane strains are related to the in-plane stresses
through the longitudinal Young’s modulus �1, the in-plane transverse Young’s modulus �2, the in-
plane Poisson’s ratio a12 and the in-plane shear modulus �12.
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It is important to note that although the transverse normal stress f3 is assumed to be zero, the
transverse normal strain Y3 need not be zero since the in-plane normal strains Y1 and Y2 can cause a
Poisson’s contraction/extension in the thickness direction. In fact, the transverse normal strain Y3 can
be obtained from (1.77) by setting out-of-plane stress components g13 and g23 and f3 to zero.

Y3 = −
a13

�1
f1 −

a23

�2
f2 (2.3)

A non-zero transverse normal strain Y3 will cause the thickness of a laminated composite plane to
either increase or decrease depending on its sign. This effect is known as thickness distention. Typically,
we are primarily interested in the analysis of stress and failure rather than in the thickness distention
of composite laminates. While we recognize that the transverse strain may be non-zero, we typically
do not use Eqn. (2.3) in our analysis. If necessary, the transverse strain Y3 can be calculated using (2.3)
after the in-plane stress components f1 and f2 have been determined.

Equation (2.2) can be rewritten as follows,


Y1

Y2

W12

 =

(11 (12 0
(12 (22 0
0 0 (66



f1

f2

g12

 (2.4)

where the 3 × 3 matrix of compliances is the reduced compliance matrix [(], and

(11 =
1
�1

, (12 = −
a12

�1
, (22 =

1
�2

, (66 =
1
�12

(2.5)

The stress-strain relationship can be inverted


f1

f2

g12

 =

(11 (12 0
(12 (22 0
0 0 (66


−1 

Y1

Y2

W12

 (2.6)

and written in the following form


f1

f2

g12

 =

&11 &12 0
&12 &22 0

0 0 &66



Y1

Y2

W12

 (2.7)

where the 3 × 3 matrix of stiffnesses is the reduced stiffness matrix [&].
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The following expressions for the reduced stiffness are obtained by inverting the 3 × 3 reduced
compliance matrix analytically.

&11 =
(22

(11(22 − (2
12

, &22 =
(11

(11(22 − (2
12

&12 =
−(12

(11(22 − (2
12

, &66 =
1
(66

(2.8)

The reduced stiffness can be expressed in terms of the engineering properties by substituting for the
compliance from Eq. (2.5) into Eq. (2.8). For example, the reduced stiffness &11 has the following form,

&11 =
(22

(11(22 − (2
12

=
1/�2(

1
�1

) (
1
�2

)
−

(
−−a12
�1

) (
− a21
�2

) = �1

1 − a12a21
(2.9)

Similarly, we can express all the reduced stiffnesses in terms of the lamina engineering properties as
follows

&11 =
�1

1 − a12a21
, &22 =

�2

1 − a12a21

&12 =
a12�2

1 − a12a21
, &66 = �12

(2.10)

It is important to note that the plane stress-reduced stiffnesses are not equal to the elastic stiffnesses,
i.e., &8 9 ≠ �8 9 and it is wrong to write the stress-strain relationship for plane stress as follows [2],

��
���

���
���

���
�XXXXXXXXXXXXXXX


f1

f2

g12

 =

�11 �12 0
�12 �22 0
0 0 �66



Y1

Y2

W12

 (2.11)

This is because the transverse normal strain Y3 on the right hand side of Eqn. (1.43) does not equal zero
for a lamina in plane stress.

2.2 Off-axis lamina

In general, fiber-reinforced laminated composite structures are made of multiple layers, each with
its own specific fiber orientation. Typically, the fiber orientations are specified relative to fixed global
structural coordinate system. The global or structural coordinate system is represented by G-H-I and
the lamina principal material coordinate system is represented by 1-2-3 as shown in Fig. 2.2.
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Figure 2.2: An off-axis lamina showing the global and principal material coordinate systems

2.2.1 Stress and strain transformation in 2D

When analyzing laminated composite structures, it is often necessary to transform stresses from the
structural coordinate system to the lamina principal coordinate system and vice versa. For example,
the stresses obtained using laminate analysis in a global structural coordinate system need to be
transformed to the principal material coordinate system when performing failure analysis.

The 2D stress transformation relations for a lamina in plane stress are obtained from the 3D stress
transformation relations by setting f3 = g23 = g13 = 0 in Eqn. (1.29),


f1

f2

g12

 = [)f]

fG

fH

gGH

 ,


fG

fH

gGH

 = [)f]
−1


f1

f2

g12

 (2.12)

where in the case of plane stress, the stress transformation matrix (1.37) and its inverse reduce
to

[)f] =

<2 =2 2<=
=2 <2 −2<=
−<= <= <2 − =2

 , [)f]−1 =


<2 =2 −2<=
=2 <2 2<=
<= −<= <2 − =2

 , (2.13)

Similarly, the following strain transformation relations for the in-plane strain components are obtained
from Eqn. (1.33)


Y1

Y2

W12

 = [)Y]

YG

YH

WGH

 ,


YG

YH

WGH

 = [)Y]
−1


Y1

Y2

W12

 (2.14)
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where the strain transformation matrix (1.38) and its inverse reduce to

[)Y] =

<2 =2 <=

=2 <2 −<=
−2<= 2<= <2 − =2

 , [)Y]−1 =


<2 =2 −<=
=2 <2 <=

2<= −2<= <2 − =2

 (2.15)

2.2.2 Off-axis elastic stiffnesses

In this section, we derive the off-axis stiffness that relate the strains and stress in the global coordinate
system. We begin with the stress-strain relationship (2.7) in the principal material coordinate system


f1

f2

g12

 = [&]

Y1

Y2

W12

 (2.16)

The stresses and strains in the principal material coordinate system are expressed in terms of the
stresses and strains in the global coordinate systems using Eqns. (2.12) and (2.14) to obtain

[)f]


fG

fH

gGH

 = [&] [)Y]

YG

YH

WGH

 (2.17)

Next, we premultiply both sides of (2.17) by the inverse of the stress transformation matrix [)f] to
obtain 

fG

fH

gGH

 = [)f]
−1 [&] [)Y]


YG

YH

WGH

 = [&]

YG

YH

WGH

 (2.18)

where [&] = [)f]−1 [&] [)Y] = [)Y]) [&] [)Y] is the off-axis reduced stiffness matrix that relate the
stresses to the strains in the global coordinate system. Eqn. (2.18) can be written in the following
form 

fG

fH

gGH

 =

&11 &12 &16

&12 &22 &26

&16 &26 &66



YG

YH

WGH

 (2.19)

where &8 9 are the off-axis stiffnesses that are obtained by taking the product of [)Y]) , [&] and [)Y].
The off-axis stiffnesses can expressed in terms of the stiffnesses in the principal material coordinate
system and the angle \ as follows,
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&11 = &11<
4 + 2(&12 + 2&66)<2=2 +&22=

4

&12 = (&11 +&22 − 4&66)=2<2 +&12(=4 +<4)

&16 = (&11 −&12 − 2&66)=<3 + (&12 −&22 + 2&66)=3<

&22 = &11=
4 + 2(&12 + 2&66)=2<2 +&22<

4

&26 = (&11 −&12 − 2&66)=3< + (&12 −&22 + 2&66)=<3

&66 = (&11 +&22 − 2&12 − 2&66)=2<2 +&66(=4 +<4)

(2.20)

where < = cos \ and = = sin \.

2.2.3 Off-axis elastic compliances

Next, we derive the off-axis compliances that relate the stresses and strains in the global coordinate
system. We begin with the stress-strain relationship (2.4) in the principal material coordinate system


Y1

Y2

W12

 = [(]

f1

f2

g12

 (2.21)

The strains and stresses in the principal material coordinate system are expressed in terms of the strains
and stresses in the global coordinate systems using Eqns. (2.14) and (2.12) to obtain

[)Y]


YG

YH

WGH

 = [(] [)f]

fG

fH

gGH

 (2.22)

Next, both sides of (2.22) are premultiplied by the inverse of the strain transformation matrix [)Y] to
obtain 

YG

YH

WGH

 = [)Y]
−1 [(] [)f]


fG

fH

gGH

 = [(]

fG

fH

gGH

 (2.23)

where [(] = [)Y]−1 [(] [)f] = [)f]) [(] [)f] is the off-axis reduced compliance matrix that relates the
strains to the strains in the global coordinate system. Eqn. (2.22) can be expressed in the following
form 

YG

YH

WGH

 =

(11 (12 (16

(12 (22 (26

(16 (26 (66



fG

fH

gGH

 (2.24)
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where (8 9 are the off-axis compliances that can be determined from the reduced compliances in the
principal material coordinate system and the fiber orientation \ as follows

(11 = (11<
4 + (2(12 + (66)<2=2 + (22=

4

(12 = ((11 + (22 − (66)=2<2 + (12(=4 +<4)

(16 = (2(11 − 2(12 − (66)=<3 + (2(12 − 2(22 + (66)=3<

(22 = (11=
4 + (2(12 + (66)=2<2 + (22<

4

(26 = (2(11 − 2(12 − (66)=3< + (2(12 − 2(22 + (66)=<3

(66 = 2(2(11 + 2(22 − 4(12 − (66)=2<2 + (66(=4 +<4).

(2.25)

EXAMPLE 2.1

Consider an off-axis IM7-8552 unidirectional lamina that is subjected to a normal stres fG = 100 MPa.
If \ = 30◦, determine the strains YG , YH and WGH .


YG

YH

WGH

 = [((30◦)]


fG

fH

gGH

 =


48.26 −19.44 −63.16
−19.44 97.91 −22.83
−63.16 −22.83 138.47

 10−12 Pa−1 ·


100
0
0

 106 Pa

=


4826
−1944
−6316

 10−6

(2.26)

That is, the strains in the global coordinate system are,

YG = 4826 `Y, YH = −1944 `Y, WGH = −6316 `rad (2.27)

It is observed that an off-axis lamina subjected to a normal stress fG will not only elongate in the
G-direction and contract in the H-direction but it will also shear in the G-H plane as shown in Fig. 2.3
due to the non-zero shear strain WGH . This is referred as extension-shear coupling. The direction and
magnitude of shear will depend on the fiber orientation \.

Figure 2.3: Response of an off-axis lamina to a normal stress fG
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It can be similarly shown that an off-axis lamina that is subjected to a shear stress will exhibit normal
strains due to shear-extension coupling.

2.3 Lamina analysis procedure

Figure 2.4: Concept map for the analysis of lamina. Adapted and modified from M.W. Hyer, Stress
Analysis of Fiber-Reinforced Composite Materials, DEStech, 2009

2.4 Engineering properties of an off-axis lamina

In this section, we obtain the engineering properties of an off-axis lamina in a global coordinate system
given the engineering properties (�1, �2, a12 and �12) in the principal material directions and the fiber
orientation \.

2.4.1 Young’s modulus �G and Poisson’s ratio aGH

To determine the Young’s modulus �G and the Poisson’s ratio aGH in the global coordinate system, we
apply a normal stress fG with fH = gGH = 0. The resulting normal strain YG is determined from the
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stress-strain relations (2.24) as
YG = (11fG (2.28)

The Young’s modulus �G in the global coordinate system is defined as the ratio of the applied normal
stress fG to the resulting normal strain YG , i.e.,

�G =
fG

YG
=

1

(11
(2.29)

The off-axis compliance (11 can be expressed in terms of the engineering properties in the principal
material coordinate system and the fiber orientation \ as,

(11 = (11<
4 + (2(12 + (66)<2=2 + (22=

4

=
1
�1
<4 +

(
−2
a12

�1
+ 1
�12

)
<2=2 + 1

�2
=4

(2.30)

Substituting for the off-axis compliance (11 from (2.30) into (2.29) give the following expression for the
off-axis Young’s modulus �G ,

�G =
�1

<4 +
(
�1
�12
− 2a12

)
<2=2 + �1

�2
=4

(2.31)

Next, the off-axis Poisson’s ratio aGH is obtained by taking the negative of the ratio of the transverse
normal strain and the longitudinal normal strain when an off-axis lamina is subjeced to a longitudinal
normal stress.

When the off-axis lamina is subjected to a normal stress fG , the resulting transverse normal strain YH is
obtained using the stress-strain relations (2.24) as

YH = (12fG (2.32)

The off-axis Poisson’s ratio is determined by taking the ratio of the transverse normal strain YH and the
longitudinal normal strain YG in Eqns. (2.32) and (2.28) ,

aGH = −
YH

YG
= −(12fG

(11fG
= −(12

(11
(2.33)

The off-axis Poisson’s ratio aGH can be expressed in terms of the engineering properties in the principal
material coordinate system and the fiber orientation \ using Eqns. (2.25) and (2.5),
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aGH =

a12
(
<4 + =4) − (

1 + �1
�2
− �1
�12

)
<2=2

<4 +
(
�1
�12
− 2a12

)
<2=2 + �1

�2
=4

(2.34)

2.4.2 Young’s modulus �H

The Young’s modulus �H in the global coordinate system can be obtained by applying a stress fH with
fG = gGH = 0.

�H =
fH

YH
=

fH

(22fH
=

1

(22
(2.35)

The off-axis Young’s modulus �H can be expressed in terms of the engineering properties in the
principal material coordinate system and the fiber orientation \ as follows

�H =
�2

<4 +
(
�2
�12
− 2a12

)
<2=2 + �2

�1
=4

(2.36)

2.4.3 Shear modulus �GH

The off-axis shear modulus �GH is obtained by applying a shear stress gGH with the normal stresses
being zero (fG = fH = 0). The shear strain WGH , obtained from the stress-strain relations (2.24), is

WGH = (66gGH (2.37)

The off-axis shear modulus �GH is defined as the ratio of the applied shear stress gGH to the resulting
shear strain WGH . That is,

�GH =
gGH

WGH
=

gGH

(66gGH
=

1

(66
(2.38)

The off-axis shear modulus can be expressed in terms of the engineering properties in the principal ma-
terial coordinate system and the fiber orientation \ using Eqns. (2.25) and (2.5) , as follows

�GH =
�12

<4 + =4 + 2<2=2
[

2�12
�1
(1 + 2a12) + 2�12

�2
− 1

] (2.39)
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EXAMPLE 2.2

The variation of off-axis engineering properties with angle \ is shown in Fig. 2.5 for IM7-8552
unidirectional carbon fiber-reinforced lamina.

Figure 2.5: Variation of engineering properties with fiber angle \ for a carbon fiber-reinforced
composite lamina

2.5 Tsai-Wu failure theory

When designing laminated composite structures, we need to make sure that the structure can withstand
the applied loads. When analyzing a composite structure, we first determine the stresses in each lamina
and then use a failure theory to determine the factor of safety. Several failure theories have been
proposed for composite materials. Here, we will use the Tsai-Wu failure theory.
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2.5.1 Failure criterion

The Tsai-Wu failure theory postulates that failure will occur when

6(f1,f2, g12) = 51f1 + 52f2 + 56g12 + 511f
2
1 + 522f

2
2 + 566g

2
12 + 2 512f1f2 + 2 516f1g12 + 2 526f2g12 = 1 (2.40)

where, 51, . . . , 526 are the Tsai-Wu failure coefficients and f1,f2, g12 are the stresses in the principal
material coordinate system. The lamina will not fail if the left hand side is less than 1.

2.5.2 Determining the failure coefficients

It can be systematically shown that 56, 516 and 526 are zero. Thus, failure will occur when

6(f1,f2, g12) = 51f1 + 52f2 + 511f
2
1 + 522f

2
2 + 566g

2
12 + 2 512f1f2 = 1 (2.41)

The failure coefficient 512 needs to be obtained experimentally using biaxial loading tests. In the absence
of experimental data, it is normally assumed that 512 = − 1

2

√
511 522. The reduced Tsai-Wu equation is

51f1 + 52f2 + 511f
2
1 + 522f

2
2 + 566g

2
12 −

√
511 522 f1f2 = 1 (2.42)

The Tsai-Wu coefficients can be determined by applying the failure theory to uniaxial loading cases.
Since the Tsai-Wu failure criteria needs to be satisfied at failure, we obtain a system of equations that
can be solved to obtain the following expressions for the Tsai-Wu coefficients in terms of the strengths,

51 =
1
�1C
− 1
�12

, 511 =
1

�1C�12
, 52 =

1
�2C
− 1
�22

, 522 =
1

�2C�22
, 566 =

1
�2

6
(2.43)

where �1C is the longitudinal tensile strength, �12 is the longitudinal compressive strength, �2C is the
transverse tensile strength, �22 is the transverse compressive strength and �6 is the in-plane shear
strength of the lamina in the principal material coordinate system.

2.5.3 Calculating the factor of safety using the Tsai-Wu failure criterion

Given a stress state (f1,f2, g12), the safety factor ( 5 is a stress multiplier that when applied to all
stress components will cause the material to fail. That is, failure will initiate when the stress state is(
( 5 f1, ( 5 f2, ( 5 g12

)
. Substituting into the Tsai-Wu failure criterion gives,

51
(
( 5 f1

)
+ 52

(
( 5 f2

)
+ 511

(
( 5 f1

)2 + 522
(
( 5 f2

)2 + 566
(
( 5 g12

)2 −
√
511 522

(
( 5 f1

) (
( 5 f2

)
= 1 (2.44)
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This is a quadratic equation for the factor of safety ( 5 , which can be written as follows

0(2
5 + 1( 5 − 1 = 0 (2.45)

where

0 = 511f
2
1 + 522f

2
2 + 566g

2
12 −

√
511 522 f1f2,

1 = 51f1 + 52f2.
(2.46)

It is noted that the coefficients 0 and 1 are dimensionless values. The quadratic equation (2.45) yields
two roots for ( 5 . The positive root, which is denoted as ( 5 0, is the factor of safety for the actual stress
state

( 5 0 =
−1 +

√
12 + 40

20
(2.47)

The quadratic equation (2.45) also yields a negative root, denoted by ( 5 A , which is the hypothetical
factor of safety when the the signs of all three stress components are reversed. The factor of safety
( 5 A corresponds to a situation when the loads are reversed thereby causing the stress components to
change sign.

( 5 A =
−1 −

√
12 + 40

20
(2.48)

EXAMPLE 2.3

Determine the factor of safety of an IM7-8552 unidirectional off-axis lamina that is oriented at \ = 30◦

and subjected to the stress state shown in Fig. 2.6.

Figure 2.6: Stresses in the principal material coordinate system
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In order to analyze the failure of the lamina, we need to first determine the stresses in the principal
material coordinate system using the stress transformation matrix.


f1

f2

g12

 = [)f (30◦)]


fG

fH

gGH

 =


3/4 1/4
√

3/2
1/4 3/4 −

√
3/2

−
√

3/4
√

3/4 1/2




200.0
50.0
50.0

 =


205.8
44.20
−39.95

 MPa (2.49)

Thus, the stresses in the principal material coordinate system are f1 = 205.8 MPa, f2 = 44.20 MPa and
g12 = −39.95 MPa as shown in Fig. 2.7.

Figure 2.7: Stresses in the principal material coordinate system

Next, the Tsai-Wu failure coefficients are determined using Eqn. (2.43) and the lamina strengths listed
in Eqn. (1.89).

51 = −2.179 × 10−10 Pa−1, 511 = 2.179 × 10−19 Pa−2, 52 = 9.286 × 10−9 Pa−1

522 = 7.143 × 10−17 Pa−2, 566 = 1.235 × 10−16 Pa−2
(2.50)

The coefficients 0 and 1 are determined from Eqn. (2.46),

0 = 511f
2
1 + 522f

2
2 + 566g

2
12 −

√
511 522 f1f2 = 0.310

1 = 51f1 + 52f2 = 0.366
(2.51)

Next, the factor of safety ( 5 0 for the actual stress state is determined using Eqn. (2.47),

( 5 0 =
−1 +

√
12 + 40

20
= 1.30 (2.52)

In this example, the transverse normal stress f2 is tensile. Since a unidirectional fiber reinforced
composite has a low tensile strength �2C in the transverse direction, the transverse tensile stress
contributes to the low factor of safety.
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The factor of safety ( 5 A for a reversed-in-sign state of stress is

( 5 A =
−1 −

√
12 + 40

20
= −2.48 (2.53)

The magnitude of the factor of safety ( 5 A is larger than ( 5 0 due to the compressive transverse normal
stress f2 when the stresses are reversed.

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Use the
Tsai-Wu theory for failure analysis.

2.1 Consider an off-axis unidirectional carbon fiber-reinforced composite lamina with the fibers
oriented at \ = 60◦ and subjected to the stress state shown in the figure below.

Determine,

(a) the off-axis compliance matrix [(̄(60◦)] and the stiffness matrix [&̄(60◦)].
(b) the strains YG , YH and WGH in the global coordinate system.
(c) the strains Y1, Y2 and W12 in the principal material coordinate system.

2.2 Consider a woven carbon fabric-reinforced composite lamina whose 1-direction (i.e., the warp
direction) is oriented at an angle of \ relative to the G-axis.
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(a) Plot the off-axis engineering properties properties �G , �H , �GH and aGH as a function of the
fiber orientation \ over the range −90◦ to 90◦. Calculate the percent change in �GH and aGH for
a fiber orientation of 45◦ compared to 0◦.

(b) Plot the off-axis stiffness &̄16 and compliances (̄11 and (̄66 as a function of the fiber orientation
\.

(c) Do the variation of the engineering properties and compliances make sense? Explain your
reasoning.

2.3 Consider a tensile specimen of a unidirectional carbon fiber-reinforced composite with a rectangular
cross section of width 25 mm and thickness 4 mm. The fibers are oriented at \ = 30◦ to the
longitudinal edge and the specimen is subjected to an axial force of 10 kN.

(a) Determine the factor of safety ( 5 0. What is the maximum tensile force that can be applied to
the specimen?

(b) Calculate the factor of safety ( 5 A . What does the magnitude of ( 5 A tell us in this application?
Why are the magnitudes of ( 5 0 and ( 5 A different?

(c) Obtain the factor of safety ( 5 0 when the fibers are oriented at \ = 60◦ to the longitudinal edge
of the specimen. Will the specimen be able to withstand the load?
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Classical Laminated Plate Theory 3
3.1 Kinematics of deformation: The Kirchhoff Hypothesis

Consider an #-layer laminated plate that is initially flat as shown in Figure 3.1. A global G-H-I Cartesian
coordinate system is introduced in which the G-H plane coincides with the geometric mid-surface of the
plate. The laminated plate is subjected to loads and it’s deformation is quantified by the displacements
D, E and F of each point in the G, H and I direction, respectively.

Figure 3.1: Schematic of a laminated composite plate

The layers or laminae are numbered from 1 to # starting from the bottom as shown in Figure 3.2. The I
coordinate specifies the location of a point in the thickness direction relative to the mid-surface.

Figure 3.2: Section of a laminate that shows the numbering and orientation of the laminae

The : th lamina extends from I: to I:+1 in the thickness direction and has a fiber orientation of \:
relative to the G-axis. The thickness of the : th lamina is ℎ: = I:+1 − I: and the total thickness of the
laminate is �.
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The deformation of the laminated plate is analyzed using the Classical Laminated Plate Theory (CLPT)
which is based on the Kirchhoff hypothesis. The fundamental assumptions of CLPT are:

1. The displacements are small compared to the thickness of the plate.
2. Material line elements that are straight and perpendicular to the mid-surface before deformation

can rotate but they remain straight and normal to the mid-surface after deformation as shown in
Fig. 3.3

3. The length of material line elements that are perpendicular to the mid-surface remain unchanged.

Figure 3.3: Kirchhoff assumption for the deformation of a classical laminated plate

Since the displacements are small in keeping with Assumption 1, the intensity of deformation is
characterized by the infinitesimal strains. The corresponding strain-displacement relations are

YG =
mD

mG
, YH =

mE

mH
, YI =

mF

mI

WGH =
mD

mH
+ mE
mG

, WGI =
mD

mI
+ mF
mG

, WHI =
mE

mI
+ mF
mH

(3.1)

Assumption 3 implies that the transverse normal strain YI is zero, i.e.,

YI =
mF

mI
= 0 (3.2)

which when integrated with respect to I gives the following general form for the transverse displace-
ment,

F = F> (G, H, C) (3.3)

The general form for F indicates that the transverse displacement can vary as a function of the in-
plane coordinates G, H, and time C, but it is independent of the I coordinate. In other words, all points
through the thickness of a laminated plate experience the same transverse displacement F> (G, H, C)
under externally applied loads. This is a direct consequence of the Kirchhoff assumption that the length
of the transverse normals remain unchanged.

Assumption 2 implies that the transverse shear strains are zero. Equation (3.1) in conjunction with (3.3)
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gives,

WGI =
mD

mI
+ mF>
mG

= 0

mD

mI
= −mF>

mG

(3.4)

which when integrated with respect to I gives a general form for the displacement in the G direction

D = −I mF>
mG
+ D> (G, H, C) (3.5)

where D> (G, H, C) is an arbitrary function of the in-plane coordinates G,H and time C.

Similarly, by setting the transverse shear strain WHI in (3.1) to zero, we obtain the following general
form for the displacement E(G, H, C),

E = −I mF>
mH
+ E> (G, H, C) (3.6)

where E> (G, H, C) is an arbitrary function of the in-plane coordinates G,H and time C.

In summary, the general forms of the displacements based on the Kirchhoff assumptions can be
expressed as follows

D(G, H, I, C) = D> (G, H, C) − I mF> (G, H, C)
mG

E(G, H, I, C) = E> (G, H, C) − I mF> (G, H, C)
mH

F(G, H, I, C) = F> (G, H, C)

(3.7)

The deformation kinematics of the classical laminated plate theory is illustrated in Figure 3.4. Let’s
consider a material line element AB that is initially perpendicular to the mid-surface. After the loads
are applied, segment AB rotates in the G-I plane but remains normal to the deformed mid-surface. The
slope of the deformed mid-surface is denoted by the angle UG where

UG =
mF>

mG
(3.8)

Since segment AB remains perpendicular to the deformed mid-surface (Assumption 2), it rotates
counterclockwise by an angle UG . If we consider point C that is located at distance of I from the
mid-surface, its horizontal displacement equals the horizontal displacement of the mid-surface minus
a displacement in the negative G-direction due to the rotation of the normal. In other words,

D = D> − IUG = D> − I
mF>

mG
(3.9)
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Figure 3.4: Kinematics of deformation based on the Kirchhoff Hypothesis

3.2 Laminate strains

The following expressions for the in-plane strains in a laminated composite plate are obtained by
substituting the displacements D, E and F from Eqn. (3.7) into the strain-displacement relations (3.1)

YG =
mD

mG
=
mD>

mG
− I m

2F>

mG2

YH =
mE

mH
=
mE>

mH
− I m

2F>

mH2

WGH =
mD

mH
+ mE
mG

=

(
mD>

mH
− I m

2F>

mHmG

)
+

(
mE>

mG
− I m

2F>

mGmH

)
=

(
mD>

mH
+ mE>
mG

)
− 2I

m2F>

mGmH

(3.10)

The in-plane strain components can be expressed in the following array form


YG

YH

WGH

 =

Y>G

Y>H

W>GH

 + I

^G

^H

^GH

 (3.11)

where Y>G , Y>H and W>GH are the mid-surface strains,

Y>G =
mD>

mG
. Y>H =

mE>

mH
, W>GH =

mD>

mH
+ mE>
mG

(3.12)

and ^G , ^H and ^GH are the mid-surface curvatures,

^G = −
m2F>

mG2 , ^H = −
m2F>

mH2 , ^GH = −2
m2F>

mGmH
(3.13)
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It is noted from (3.11) that the strain components have a linear variation in the thickness direction. The
strains Y>G , Y>H are the normal strains and W>GH is the in-plane shear strain experienced by an element
on the mid-surface at I = 0. The quantities ^G and ^H are the curvatures of the mid-surface in the
G- and H-directions, respectively. The shapes of the deformed mid-surface corresponding to positive
curvatures ^G and ^H are shown in Fig. 3.5.

Figure 3.5: Mid-surface curvatures in the G and H directions

The quantity ^GH is a twisting curvature. The shape of the mid-surface corresponding to a positive ^GH
is depicted in Fig. 3.6.

Figure 3.6: Mid-surface twisting curvature

3.3 Laminate stresses

The strains at any location within a laminate can be calculated using Eqn. (3.11) if the mid-surface
strain Y>G , Y>H and W>GH and curvatures ^G , ^H and ^GH are known. Since every point within the laminate
is assumed to be in a state of plane stress, the stresses at a distance I from the mid-surface can be
determined from the strains at that location using the plane stress reduced constitutive equations (2.19)
for an off-axis ply. 

fG (I)
fH (I)
gGH (I)

 = [&(I)]

YG (I)
YH (I)
WGH (I)

 (3.14)
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where [&(I)] is the reduced stiffness matrix at I. The in-plane stresses can be directly related to the
mid-surface strains and curvatures by substituting for the strain from (3.11) into (3.14)


fG (I)
fH (I)
gGH (I)

 = [&(I)]
©­­«

Y>G

Y>H

W>GH

 + I

^G

^H

^GH


ª®®¬ (3.15)

The reduced stiffnesses &8 9 depend on the lamina fiber orientation \. In the case of a laminated
composite plate, each lamina has its own fiber orientation \: where the subscript : denotes the
layer number. The fiber orientation and stiffnesses are assumed to be constant with each lamina.
Therefore, the reduced stiffnesses at a point whose thickness coordinate is I in layer : can be written as
&8 9 (I) = &

(:)
8 9 where &

(:)
8 9 are the reduced stiffnesses for the : th lamina. The in-plane stresses at that

point are,


fG (I)
fH (I)
gGH (I)


(:)

=


&11 &12 &16

&12 &22 &26

&16 &26 &66


(:) ©­­«


Y>G

Y>H

W>GH

 + I

^G

^H

^GH


ª®®¬ (3.16)

Since the reduced stiffnesses have a piecewise constant variation and the strains have a linear variation
in the thickness direction, the stresses exhibit a piecewise linear variation through the thickness of the
laminate.

3.4 Force and moment resultants

When analyzing laminated composite plates, the net loads acting on an element are represented by
force and moment resultants. The in-plane force resultants are defined as the resultant forces per width
and are obtained by integrating the stresses through the thickness of the laminate.

#G =

∫ �/2

−�/2
fG (I) 3I

#H =

∫ �/2

−�/2
fH (I) 3I

#GH =

∫ �/2

−�/2
gGH (I) 3I

(3.17)

The in-plane force resultants are by definition forces per unit width and have units of N/m The force
resultants #G and #H represent the normal forces acting on the element in the G- and H-directions,
respectively. The force resultant #GH represents the shear force acting parallel to the edges. The force
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resultants are distributed forces acting the edges of an element as illustrated in Fig. 3.7(a) although
they are usually represented by single arrows as shown in Fig. 3.7(b) for the sake of convenience.

Figure 3.7: Force resultants acting on an element

The three integrals in (3.17) can be represented an integral of a column array of in-plane stresses,


#G

#H

#GH

 =
∫

�/2

−�/2


fG (I)
fH (I)
gGH (I)

 3I (3.18)

The moment resultants are defined as
"G

"H

"GH

 =
∫

�/2

−�/2


fG (I)
fH (I)
gGH (I)

 I 3I (3.19)

where "G and "H are the bending moments and "GH is the twisting moment that act on the edges of
element as shown in Fig. 3.8. The moments resultants are by definition moments per unit width and
have units of N·m/m.
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Figure 3.8: Moment resultants acting on an element

3.5 Load-deformation relations

In this section, we relate the force and moment resultants acting on an element to its mid-surface
strains and curvatures. The stresses from (3.15) are substituted into the integral for the force resultant
(3.18) and written as the sum of two terms (3.14), (3.15) and (3.18):


#G

#H

#GH

 =
∫

�/2

−�/2


fG (I)
fH (I)
gGH (I)

 3I =
∫

�/2

−�/2

[
& (I)

] 
YG (I)
YH (I)
WGH (I)

 3I
=

∫
�/2

−�/2

[
& (I)

] ©­­«

Y0
G

Y0
H

W0
GH

 + I

^G

^H

^GH


ª®®¬ 3I

=

(∫ �/2

−�/2

[
& (I)

]
3I

) 
Y0
G

Y0
H

W0
GH

 +
(∫ �/2

−�/2

[
& (I)

]
I3I

) 
^G

^H

^GH



(3.20)

The first term in (3.20) captures the contribution of the mid-surface strains and the second term captures
the contribution of the mid-surface curvatures to the force resultants. Equation (3.20) can be written
as,


#G

#H

#GH

 = [�]

Y0
G

Y0
H

W0
GH

 + [�]

^G

^H

^GH

 (3.21)

where the matrices [�] and [�] are defined as follows,

[�] =
∫ �/2

−�/2

[
&

]
3I , [�] =

∫ �/2

−�/2

[
&

]
I3I (3.22)
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Next, substituting for the stresses from (3.15) into the integral for the moment resultant (3.19) and
integrating yields


"G

"H

"GH

 =
∫

�/2

−�/2


fG (I)
fH (I)
gGH (I)

 I 3I =
∫

�/2

−�/2

[
& (I)

] 
YG (I)
YH (I)
WGH (I)

 I 3I
=

∫
�/2

−�/2

[
& (I)

] ©­­«

Y0
G

Y0
H

W0
GH

 + I

^G

^H

^GH


ª®®¬ I 3I

=

(∫ �/2

−�/2

[
& (I)

]
I 3I

) 
Y0
G

Y0
H

W0
GH

 +
(∫ �/2

−�/2

[
& (I)

]
I2 3I

) 
^G

^H

^GH



(3.23)

where the first term captures the contribution of the mid-surface strains and the second term captures
the contribution of the mid-surface curvatures to the moment resultants. Eqn. (3.23) can be written in
the following form


"G

"H

"GH

 = [�]

Y0
G

Y0
H

W0
GH

 + [�]

^G

^H

^GH

 (3.24)

where matrix [�] has been previously defined in (3.22) and matrix [�] has the following definition

[�] =
∫ �/2

−�/2

[
&(I)

]
I23I (3.25)

Eqns. (3.21) and (3.24) for the force and moment resultants can be combined into a single matrix
equation as follows



#G

#H

#GH

"G

"H

"GH


=



�11 �12 �16 �11 �12 �16

�12 �22 �26 �12 �22 �26

�16 �26 �66 �16 �26 �66

�11 �12 �16 �11 �12 �16

�12 �22 �26 �12 �22 �26

�16 �26 �66 �16 �26 �66





Y0
G

Y0
H

W0
GH

^G

^H

^GH


(3.26)

where the 6× 6 matrix consisting of �8 9 , �8 9 and �8 9 is known as the [���] matrix. �8 9 are the laminate
extensional rigidities that relate the mid-surface strains to the force resultants. �8 9 are the laminate
bending/flexural rigidities that relate the curvatures to the moment resultants. �8 9 are the laminate
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bending-extension coupling rigidities that relate the curvatures to the force resultants and the mid-
surface strains to the moment resultants. Since the off-axis stiffness matrix [&] is symmetric, the
laminate stiffness matrices [�], [�] and [�] are symmetric as well.

Eqn. (3.26) can be expressed compactly as{
#

"

}
=

[
� �

� �

] {
Y0

^

}
(3.27)

where {#}, {"}, {Y0} and {^} are 3 × 1 column arrays of force resultants, moment resultants, mid-
surface strains and mid-surface curvatures, respectively.

3.5.1 Computing the ABD matrices

The calculation of the laminate stiffness matrices [�], [�] and [�] requires us to perform the through
thickness integrations in Eqns. (3.22) and (3.25). Since the : th layer extends from I: to I:+1 and [&(I)]
is piecewise constant (i.e. constant in each layer or lamina of the laminate), the integrals can be
transformed into a summation over the layers. The stiffness matrix [�] is integrated as

[�] =
∫ �/2

−�/2

[
& (I)

]
3I =

#∑
:=1

∫ I:+1

I:

[
&

] (:)
3I

=

#∑
:=1

[
&

] (:) ∫ I:+1

I:

3I

(3.28)

Thus, the stiffness matrix [�] can be calculated through the following summation,

[�] =
#∑
:=1

(I:+1 − I:)
[
&

] (:)
(3.29)

Note that I:+1 − I: is the thickness ℎ: of lamina : . Therefore, the stiffness matrix [�] can be determined
through a layer by layer summation of the product of the lamina thickness ℎ: and off-axis stiffness
matrix [&] (:) .

The laminate stiffness matrices [�] and [�] can be similarly obtained through a summation over all
the layers
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[�] = 1
2

#∑
:=1

(
I2
:+1 − I

2
:

) [
&

] (:)
[�] = 1

3

#∑
:=1

(
I3
:+1 − I

3
:

) [
&

] (:) (3.30)

The individual terms of the [�], [�] and [�] matrices can be evaluated separately if needed. For
example,

�8 9 =
1
2

#∑
:=1

(
I2
:+1 − I

2
:

)
&
(:)
8 9 (3.31)

3.5.2 Inversion of the load-deformation relations

If the force and moment resultants are know, the mid-surface strains and curvatures can be obtained
by inverting (3.27). {

Y0

^

}
=

[
� �

� �

]−1 {
#

"

}
=

[
0 1

1) 3

] {
#

"

}
(3.32)

where the 6 × 6 [013] matrix is the inverse of the 6 × 6 [���] matrix, i.e.,

[
0 1

1) 3

]
=

[
� �

� �

]−1

(3.33)

The [013] matrix is a 6 × 6 matrix of laminates compliances. The matrices [0] and [3] are symmetric.
However, the matrix [1] need not be symmetric.

3.5.3 Elastic Couplings

The first three rows of (3.32) relate the mid-surface strains to the force and moment resultants


Y0
G

Y0
H

W0
GH

 =

011 012 016

012 022 026

016 026 066



#G

#H

#GH

 +

111 112 116

121 122 126

161 162 166



"G

"H

"GH

 (3.34)
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while last three rows of (3.32) relate the mid-surface curvatures to the force and moment resul-
tants 

^G

^H

^GH

 =

111 121 161

112 122 162

116 126 166



#G

#H

#GH

 +

311 312 316

312 322 326

316 326 366



"G

"H

"GH

 (3.35)

Here 08 9 are the laminate extensional compliances that relate the force resultants to the mid-surface
strains. 38 9 are the laminate bending/flexural compliances that relate the moment resultants to the
mid-surface curvatures. 18 9 are the laminate bending-extension coupling compliances that relate the
moment resultants to the mid-surface strains and the force resultants to the curvatures. The laminate
compliances capture the response of a laminated composite material to applied loads. Laminated
composite plates can exhibit behaviors that are not seen in isotropy plates.

In plane shear-extension coupling
The compliances 016 and 026 capture the influence of the in-plane axial forces on the in-plane shear
strains and the in-plane shear forces on the in-plane normal strains. For example, if 016 ≠ 0, an axial
load #G will induce a shear strain W0

GH . Similarly, a shear load #GH will induce a normal strain Y0
G .

Bending-twisting coupling
These compliances 316 and 326 capture the influence of the bending moments on the twisting curvatures
and the twisting moment on the bending curvatures. For example, if 316 ≠ 0, a bending moment "G

will induce a twisting curvature ^GH and a twisting moment "GH will induce a bending curvature ^G .

Bending-extension coupling
The compliances 18 9 couple the moment resultants to the mid-surface strains and the force resultants
to the curvatures. For example, if 111 ≠ 0, #G will induce a curvature ^G and "G will induce an in-plane
strain Y0

G .

3.6 Laminate nomenclature and special types of laminates

3.6.1 Stacking sequence

In this section, we introduce the notation for specifying the fiber orientations of a laminate, known as
the stacking sequence. The stacking sequence is specified in the form of an array of values enclosed in
square brackets that contains the fiber orientations (in degrees) of the individual layers separated by the
slash (/) symbol starting with the bottom layer and ending in the top layer, i.e., [\1/\2/· · · /\:/· · · /\# ].
Fig. 3.9 shows a representative 5-layer laminate that has stacking sequence of [0/45/90/−45/0].
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Figure 3.9: Representative [0/45/90/-45/0] ply stacking sequence

We use the following convention when specifying the stacking sequence.

1. In the case of laminates that are symmetric about the mid-surface, known as symmetric laminates,
the stacking sequence of the bottom half of the laminate is specified followed by a subscript (. For
example, [45/-30/0/0/-30/45] is abbreviated as [45/-30/0]( . Symmetric laminates with an odd number
of layers are listed with a bar over the center layer to indicate that it straddles the mid-surface. For
example,[0/45/90/45/0] is abbreviated as [0/45/90]( .

2. Adjacent layers with fiber orientations of +\ followed by −\ are abbreviated as ±\. For exmaple, a
stacking sequence of [0/30/±45] is equivalent to [0/30/45/-45]. Similarly, adjacent layers with fiber
orientations −\ followed by +\ are abbreviated as ∓\, e.g. [0/30/∓45] is equivalent to [0/30/-45/45].

3. A subscript = is used to designate adjacent layers with the same fiber orientation. For example,
[-30/90/90/45/0/-45] is abbreviated as [-30/902/45/0/-45]. Repeated groups of layers are listed in
parenthesis with a subscript =, e.g., [45/-45/0/45/-45/0] is abbreviated as [(±45/0)2].

3.6.2 Laminate stiffness for special types of laminates

Symmetric laminates
A laminate is said to be symmetric when for each layer on one side of the mid-surface, there is a
corresponding layer on the other side with identical thickness, properties and orientation. In the case
of symmetric laminates, the contributions of layers on opposite sides of the mid-surface to the laminate
stiffnesses [�] cancel out and we obtain

�8 9 = 0 or [�] = [0]

Balanced laminates
A laminate is said to be balanced if for every lamina whose fibers are oriented at a certain angle \,
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there is another lamina oriented at −\ somewhere in the laminate, e.g. [45/−30/0/−45/30]. In the case
of balanced laminates,

�16 = �26 = 0

Cross-ply laminates
Cross-ply laminates have fibers oriented at either 0◦ or 90◦, e.g., [0/90]( . Since &16 = &26 = 0 for each
layer, �16 = �26 = 0, �16 = �26 = 0 and �16 = �26 = 0.

Quasi-isotropic laminates
Quasi-isotropic laminates are special type of symmetric laminates with in-plane stiffness that behaves
like that of an isotropic plate. That is,

�11 = �22 , �16 = �26 = 0 , �66 =
�11 − �12

2

Examples of quasi-isotropic laminates include [0/90/45/−45]( , [0/60/−60]( .

3.7 Laminate analysis procedure

Figure 3.10: Concept map for the analysis of laminated composites. Adapted and modified from M.W.
Hyer, Stress Analysis of Fiber-Reinforced Composite Materials, DEStech, 2009
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3.8 Analysis of laminates subjected to in-plane loads

3.8.1 Thin laminated tubes subjected to an axial force and a torque

Consider a thin laminated composite tube with a symmetric ply layup. It is assumed that the mean
radius ' is much larger than the wall thickness �. The tube is subjected to an axial force % and a torque
) , as shown in Fig. 3.11.

Figure 3.11: A thin-walled laminated tube subjected to axial and torsional loads

In the case of a thin-walled tube, we can treat an element as a flat laminate and relate the force and
moment resultants to the applied loads as follows

#G =
%

2c'
, #GH =

)

2c'2 , #H = 0 , "G = "H = "GH = 0 (3.36)

The force and moment resultants can be substituted into (3.34) and (3.35) to obtain the mid-surface
strains

{
Y0} and curvatures {^}. Subsequently, we can calculate the stresses using (3.15) and analyze

the safety factor using the Tsai-Wu failure theory.

3.8.2 Laminated composite pressure vessels

Consider a thin-walled pressure vessel with a mean radius ' and wall thickness � that is subjected
to an internal pressure ? as shown in Fig. 3.12. The pressure vessel is assumed to have a symmetric
layup.

The in-plane force resultants in the axial and hoop direction are obtained using static equilibrium.

#G =
?'

2
, #H = ?' , #GH = 0 (3.37)
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Figure 3.12: A thin-walled laminated pressure vessel with rigid end caps, subjected to an internal
pressure

The moment resultants are assumed to be zero.

"G = "H = "GH = 0 (3.38)

3.9 Analysis of laminated composite beams

Consider a laminated beam of length ! and width , . The thickness � of the laminated beam is
assumed to be much smaller than the length !. The beam is assumed to have a symmetric layup to
preclude bending-extension coupling effects.

Figure 3.13: A thin laminated beam in bending
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3.9.1 Stress analysis of laminated beams

As we would for a regular beam, we can draw the bending moment diagram and use it to determine
the bending moment " at the spanwise location of interest. The moment resultant "G is the bending
moment per unit width. That is,

"G = −
"

,
(3.39)

The negative sign is introduce to account for the fact that the positive convention for the bending
moment " is opposite to that of the positive direction for "G . All other force and moment resultants
are zero, i.e., #G = #H = #GH = 0,"H = "GH = 0. Next, we can evaluate the mid-surface strains and
curvatures and obtain the through-thickness variation of stresses.

3.9.2 Deflection of laminated beams

In the case of symmetric beam, the laminate compliance matrix [1] = 0 and (3.35) simplifies to


^G

^H

^GH

 =

311 312 316

312 322 326

316 326 366




"G

�
�>

0
"H

��
�* 0

"GH

 (3.40)

Therefore, the curvature ^G in the spanwise direction,

^G = 311"G = −
311"

,
(3.41)

from which we can obtain the moment-curvature relationship

" =

(
,

311

)
︸︷︷︸

bending rigidity

· (−^G)︸︷︷︸
beam curvature

(3.42)

where,/311 is the rigidity of the laminated beam. Therefore, we can replace the laminate beam with
an equivalent homogeneous beam with effective flexural modulus �

fl
G that is obtained by equating the

equivalent bending rigidity �
fl
G � to the effective rigidity,/311 of the laminate where � = ,�3/12 is the

moment of inertia of the equivlaent homgoeneous beam

�
fl
G � =

,

311
⇒ �

fl
G

(
1
12
,�3

)
=
,

311
(3.43)

from which we obtain the effective flexural modulus �
fl
G
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�
fl
G =

12
311�3 (3.44)

Thus, the deflection of a laminated composite beam can be obtained by replacing the laminated beam
with a homogeneous beam of flexural modulus �

fl
G and using the strength of materials expressions for

deflection.

EXAMPLE 3.1: Deflection of a laminated cantilever beam

Consider a laminated cantilever beam of length ! that is subjected to a concentrated force % at the tip.

Figure 3.14: Laminated cantilever beam

The tip deflection X is obtained using the beam theory formula by replacing the Young’s modulus �
by the flexural modulus �

fl
G

X =
%!3

3�
fl
G �

(3.45)

where �
fl
G can be determined from the bending compliance 311 and beam thickness � using (3.44)

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness ℎ of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

3.1 Consider a [0/45] unidirectional carbon fiber-reinforced composite laminate. The laminate experi-
ences the following mid-surface strains and curvatures when subjected to certain loads: Y0

G = 1000 `,
^G = −10 m−1 and ^GH = 10 m−1. All the other mid-surface strains and curvatures are zero.

(a) Plot the through-thickness variation of the strain YG , YH and WGH (in `Y)
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(b) Determine the stresses fG ,fH and gGH at the top and bottom surfaces of each lamina in the
global coordinate system and plot the through-thickness variation of the stresses fG ,fH and
gGH (in MPa)

(c) Determine the stresses f1,f2 and g12 at the top surface of the laminate in the material coordi-
nate system.

3.2 Consider a symmetric balanced laminate with known laminate stiffnesses �8 9 , compliances 08 9 and
thickness �.

(a) Derive expressions for the effective in-plane laminate elastic moduli �̄G , �̄H , āGH and �̄GH in
the G-H global coordinate system in terms of �8 9 or 08 9 and thickness �.

(b) Obtain the effective elastic moduli �̄G , �̄H , āGH and �̄GH of a [0/90/0] unidirectional carbon
fiber-reinforced composite in the G-H global coordinate system. Is �̄G or �̄H larger and why?
How does �̄GH compare with the shear modulus �12 of a lamina? Discuss your results.

(c) Consider a [0/90/±45]( quasi-isotropic laminate made of unidirectional carbon fiber-reinforced
plies. Calculate the elastic moduli �̄G , �̄H , āGH and �̄GH in the G-H global coordinate system.
Does the laminate behave like an isotropic plate, i.e., is �̄G = �̄H and �GH = �G/2(1 + aGH)? Are
the bending rigidities �11 and �22 the same as is the case for isotropic plates?

(d) If you rotate the entire quasi-isotropic laminate considered in part (c) by an arbitrary angle U,
say 30◦, do the elastic moduli �̄G , �̄H , āGH and �̄GH change? Do the bending rigidities �11 and
�22 change after the laminate is rotated? You can check your answer by rotating all the plies
by an angle of 30◦.

3.3 Consider a [±30]( thin-walled laminated tube made of woven fabric-reinforced plies. The tube has a
mean radius ' = 5 cm and length ! = 0.5 m. It is subjected to a torque of ) = 2 kN·m and an axial
force of % = 20 kN. The G and H- directions are oriented parallel to the axial and circumferential
directions, respectively.

(a) Determine the midsurface strains and curvatures. Discuss their relative values and whether
they make sense.

(b) Determine the overall elongation (in mm) of the tube using the midsurface strain Y0
G and

length !
(c) Derive an expression for the total twist of the tube (rotation of one end relative to the other)

using the mid-surface shear strain W0
GH , the length ! and the radius '. Use the obtained
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expression to calculate the total twist in degrees.
(d) Plot the through-thickness variation of the strain YG and stress components fG , gGH and g12.

Which layer(s) exhibit the largest shear stress g12?
(e) Plot the through-thickness variation of the factor of safety ( 5 0. Determine the minimum

factor of safety (<8=
5 0

and the corresponding layer(s).

3.4 Consider a cross-ply (i.e., 0◦ or 90◦ plies) laminated composite pressure vessel made of unidirec-
tional carbon fiber-reinforced laminae. It has a mean radius of ' = 0.25 m and is subjected to an
internal gauge pressure of ? = 1.25 MPa.

(a) Consider the case where the pressure vessel is made of a [0/90/0] cross-ply laminate. Calculate
the transverse normal stress f2 in the plies and compare it with the transverse tensile strength
�2C . Determine the factor of safety ( 5 0. Will the pressure vessel be able to withstand the
internal pressure?

(b) Is there another symmetric, cross-ply lamination scheme that will give a higher factor of safety
than the one in part (a), preferably without increasing the weight? If so, specify the stacking
sequence, the corresponding safety factor and the reason why it has a higher factor of safety.

3.5 Consider a symmetric cross-ply laminated simply supported beam of solid rectangular cross-
section made of unidirectional carbon fiber-reinforced laminae. The beam is of length ! = 20 cm
and width, = 5 cm. It is subjected to a net force of % = 5 N at the mid-span as shown in the figure.

(a) If the beam has a [90/0]( stacking sequence, plot the through-thickness variation of the stress
components fG , f2 and the factor of safety ( 5 0 at the location where the bending moment is
largest. Determine the minimum factor of safety (<8=

5 0
. Where is the factor of safety the lowest
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(specify the layer and through-thickness location)? Can you explain why the factor of safety
is lowest at that location?

(b) Determine the mid-span deflection X of the [90/0]( laminated beam considered in part (a).
(c) If the beam has a [0/90]( stacking sequence, determine the minimum factor of safety (<8=

5 0

and compare it with the value obtained for a [90/0]( in part (a). Where is the factor of safety
the lowest? Can you explain why the factor of safety is lowest at that location?

(d) Compare the deflection of the [0/90]( beam considered in part (c) with the value obtained in
part (b) for a [90/0]( beam. Are the deflections significantly different? If so, can you explain
why?



Equations of Motion for a Plate 4
In this chapter, we will derive the equations of motion of a laminated composite plate in terms of the
force and moment resultants from the three dimensional equations of motion.

4.1 Analysis of laminated composite plates

Consider a laminated rectangular plate of length 0 in the G-direction and width 1 in the y-direction
as shown in Fig. 4.1. The laminated plate is composed of # laminae and has a total thickness �. It is
subjected to a distributed load of magnitude @(G, H, C) in the positive I-direction. The distributed load
can act either on the top surface (I = �/2) or the bottom surface (I = -�/2). The distributed load can
have a non-uniform spatial variation with respect to the in-plane coordinates G and H. In addition, the
load can vary with time C in the case of dynamic loading (e.g., forced vibration).

Figure 4.1: Rectangular laminated plate subjected to loads

In general, the force and moment resultants acting on element of a laminated composite plate vary
from point to point. When analyzing laminated plates, we use the equations for motion and boundary
conditions to determine the force resultants, the moment resultants, mid-surface strains and curvatures
at a location.

4.1.1 Transverse Shear Force Resultants

In addition to the in-plane force resultants #G , #H and #GH , and the moment resultants "G , "H and
"GH defined earlier in Sec. 3.4, we define the transverse shear force resultants +G and +H as follows,

+G =

∫ �/2

−�/2
gGI3I , +H =

∫ �/2

−�/2
gHI3I (4.1)
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The transverse shear force resultants +G and +H are the vertical forces per unit width acting on the
surfaces normal to the G and H-axes, respectively, as shown in Fig. 4.2.

Figure 4.2: Shear force resultants acting on an element

4.2 Equations of motion for a laminated plate

4.2.1 Three-dimensional equations of motion

To derive the equations of motion of a laminated plate in terms of the force and moment resultants, we
start with the three dimensional equations of motion for an elastic body, namely [1]

mfG

mG
+
mgGH

mH
+ mgGI
mI

= d
m2D

mC2
(4.2a)

mgGH

mG
+
mfH

mH
+
mgHI

mI
= d

m2E

mC2
(4.2b)

mgGH

mG
+
mgHI

mH
+ mfI
mI

= d
m2F

mC2
(4.2c)

where d is the mass density of the material. Note that we have neglected body forces for the sake of
simplicity.

4.2.2 Equations of motion in terms of force and moment resultants

We can integrate the equations of motion through the thickness of a laminated plate to obtain the
equations of motion in terms of the force and moment resultants. Since the equations of motion are
satisfied at every point within a laminated plate, we can integrate them through the thickness of the
laminated plate and the resulting equations should also be satisfied.
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(a) Equation of motion in the G-direction

We integrate Eqn. (4.2a) through the thickness (i.e. with respect to I)∫
�/2

−�/2

(
mfG

mG
+
mgGH

mH
+ mgGI
mI

)
3I =

∫
�/2

−�/2
d
m2

mC2

(
D0 − I

mF0

mG

)
3I (4.3)

m

mG

∫ �/2

−�/2
fG3I +

m

mH

∫ �/2

−�/2
gGH3I + gGI

����/2
−�/2

=
m2D0

mC2

∫ �/2

−�/2
d3I − m2

mC2

(
mF0

mG

) ∫ �/2

−�/2
dI3I (4.4)

Next, based on the definition of in-plane force resultants, we obtain

m#G

mG
+
m#GH

mH
+����

��:0
gGI (�/2) −����

��:0
gGI (−�/2) = �0

m2D0

mC2
− �1

m2

mC2

(
mF0

mG

)
(4.5)

which reduces to the following equation of motion in terms of force resultants since there are no shear
stresses acting on the top and bottom surfaces of the plate, i.e., gGI (−�/2) = gGI (�/2) = 0,

m#G

mG
+
m#GH

mH
= �0

m2D0

mC2
− �1

m2

mC2

(
mF0

mG

)
(4.6)

where �8 are integrals that involve the density and are defined as

�8 =

∫ �/2

−�/2
d (I) I83I (4.7)

The integrals �8 can be written in array form for 8 = 0, 1, 2 as


�0

�1

�2

 =
∫

�/2

−�/2

d (I)


1
I

I2

 3I (4.8)

Physically, �0 is the mass of the plate per unit area (i.e. areal mass) and �2 is known as "rotary inertia".
Since the density is usually constant for each layer, the integrals (4.8) can be evaluated through a layer
by layer integration and expressed as

�8 =

#∑
:=1

∫ I:+1

I:

d: I
83I =

1
(8 + 1)

#∑
:=1

d:

[
I
(8+1)
:+1 − I

(8+1)
:

]
(4.9)

We thus obtain the following expressions for �0, �1 and �2
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�0 =

#∑
:=1

d: (I:+1 − I:) =
#∑
:=1

d:ℎ: , �1 =
1
2

#∑
:=1

d:

(
I2
:+1 − I

2
:

)
, �2 =

1
3

#∑
:=1

d:

(
I3
:+1 − I

3
:

)
(4.10)

The expressions for �0, �1 and �2 in (4.10) are valid for a hybrid laminate where each ply may have a
different density. In the case of laminate where all the laminae have the same density d, the integral
(4.7) for �8 reduces to

�8 = d

∫ �/2

−�/2
I83I =

d

(8 + 1) I
(8+1) ���/2

−�/2 (4.11)

and we obtain

�0 = d�, �1 = 0, �2 =
d�3

12
if d: = d (4.12)

(b) Equation of motion in the H-direction

We Integrate (4.2b) through the thickness (i.e. with respect to I)∫
�/2

−�/2

(
mgGH

mG
+
mfH

mH
+
mgHI

mI

)
3I =

∫
�/2

−�/2
d
m2

mC2

(
E0 − I

mF0

mH

)
3I (4.13)

Integrating term by term and using the definition of force resultants gives

m#GH

mG
+
m#H

mH
+����

��:0
gHI (�/2) −����

��:0
gHI (−�/2) = �0

m2E0

mC2
− �1

m2

mC2

(
mF0

mH

)
(4.14)

Since there are no shear stresses on the top and bottom surfaces, i.e. gHI (−�/2) = gHI (�/2) = 0, we
obtain

m#GH

mG
+
m#H

mH
= �0

m2E0

mC2
− �1

m2

mC2

(
mF0

mH

)
(4.15)

(c) Equation of motion in the I-direction

We integrate (4.2c) through the thickness (i.e. with respect to I)∫
�/2

−�/2

(
mgGI

mG
+
mgHI

mH
+ mfI
mI

)
3I =

∫
�/2

−�/2
d
m2F0

mC2
3I (4.16)
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Integrating term by term and using the definition of the shear force resultants in (4.1), gives

m+G

mG
+
m+H

mH
+ fI (�/2) − fI (−�/2) = �0

m2F0

mC2
(4.17)

The distributed load @(G, H, C) can act on either the top or bottom surface, as shown in Fig. 4.3.

Figure 4.3: Distributed load acting on the top and bottom surfaces of a laminate

If the distributed load is applied on the top surface then, fI (�/2) = @ (G, H, C) and fI (−�/2) = 0. On
the other hand, if the distributed load is applied on the bottom surface, then fI (−�/2) = −@ (G, H, C)
and fI (�/2) = 0. In both cases, we obtain

fI (�/2) − fI (−�/2) = @ (G, H, C) (4.18)

Substituting from (4.18) into (4.17) gives

m+G

mG
+
m+H

mH
+ @ (G, H, C) = �0

m2F0

mC2
(4.19)

(d) First moment of the equation of motion in the G-direction

We multiply (4.2a) by I and integrate with respect to I

∫ �/2

−�/2

mfG

mG
I3I +

∫ �/2

−�/2

mgGH

mH
I3I +

∫ �/2

−�/2

mgGI

mI
I3I =

∫ �/2

−�/2
d

(
m2D0

mC2
− I m

2

mC2

(
mF0

mG

))
I3I (4.20)

from which it follows that,

m

mG

∫ �/2

−�/2
fGI3I +

m

mH

∫ �/2

−�/2
gGHI3I +

∫ �/2

−�/2

[
m

mI
(IgGI) − gGI

]
3I = �1

m2D0

mC2
− �2

m2

mC2

(
mF0

mG

)
(4.21)

Evaluating the terms in equation (4.21) gives

m"G

mG
+
m"GH

mH
+
��

�
��*

0
IgGI

����/2
−�/2

−+G = �1
m2D0

mC2
− �2

m2

mC2

(
mF0

mG

)
(4.22)
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Since the shear stress gGI = 0 on the top and bottom surface, (4.22) reduces to

m"G

mG
+
m"GH

mH
−+G = �1

m2D0

mC2
− �2

m2

mC2

(
mF0

mG

)
(4.23)

(e) First moment of the equation of motion in the H-direction

Using a process similar to the one in (d), we multiply (4.2b) by I and integrate with respect to I to
obtain

m"GH

mG
+
m"H

mH
−+H = �1

m2E0

mC2
− �2

m2

mC2

(
mF0

mH

)
(4.24)

4.2.3 Equations of motion for classical laminated plate theory

In the classical laminated plate theory, the governing equations are solved to obtain the three mid-
surface displacements, namely D> (G, H, I, C), E> (G, H, I, C) and F> (G, H, I, C), from which the mid-surface
strains, curvatures and through-the-thickness variation of stresses are obtained. The five equations of
motion, namely (4.6), (4.15), (4.19), (4.23) and (4.24), are reduced to a system of three equations for D>,
E> and F> by eliminating +G and +H .

Differentiating equation (4.23) with respect to G and equation (4.24) with respect to H yields

m+G

mG
=
m2"G

mG2 +
m2"GH

mGmH
− �1

m

mG

(
m2D0

mC2

)
+ �2

m2

mC2

(
m2F0

mG2

)
(4.25a)

m+H

mH
=
m2"GH

mGmH
+
m2"H

mH2 − �1
m

mH

(
m2E0

mC2

)
+ �2

m2

mC2

(
m2F0

mH2

)
(4.25b)

Substituting equations (4.25a) and (4.25b) into equation (4.19) gives

m2"G

mG2 +
m2"GH

mGmH
− �1

m

mG

(
m2D0

mC2

)
+ �2

m2

mC2

(
m2F0

mG2

)
+
m2"GH

mGmH
+

m2"H

mH2 − �1
m

mH

(
m2E0

mC2

)
+ �2

m2

mC2

(
m2F0

mH2

)
+ @ (G, H, C) = �0

m2F0

mC2

(4.26)

from which it follows that

m2"G

mG2 + 2
m2"GH

mGmH
+
m2"H

mH2 + @ (G, H, C) = �0
m2F0

mC2
+ �1

m2

mC2

(
mD0

mG
+ mE0

mH

)
− �2

m2

mC2

(
m2F0

mG2 +
m2F0

mH2

)
(4.27)
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Equations (4.6), (4.15) and (4.27) are the equations of motion for a laminated plate.

4.2.4 Equilibrium equations for classical laminated plate theory

In the case of static loading, the displacements do not vary with time. Hence the partial derivatives with
respect to time on the right hand side of (4.6), (4.15) and (4.27) are zero and we obtain the following
equilibrium equations for a laminated plate

m#G

mG
+
m#GH

mH
= 0 (4.28a)

m#GH

mG
+
m#H

mH
= 0 (4.28b)

m2"G

mG2 + 2
m2"GH

mGmH
+
m2"H

mH2 + @ (G, H) = 0 (4.28c)

Upon solving the boundary value problem and obtaining the bending moments "G , "H and the
twisting moment "GH , we can obtain the transverse shear force resultants from (4.23) and (4.24) as
follows

+G =
m"G

mG
+
m"GH

mH
, +H =

m"GH

mG
+
m"H

mH
(4.29)

4.3 Physical interpretation of the equilibrium equations

The equilibrium equations (4.28) can be obtained by considering the equilibrium of forces and moments
acting on element.

4.3.1 Force balance in the G-direction in terms of resultants

Since the force and moment resultants vary from point to point in a laminated plate, we can use a
Taylor series expansion to represent the resultants acting on the edges in terms of the resultants at the
center of an element. Thus the axial force resultant #G on edge BC that is at a distance of ΔG/2 from
the center is #G + m#GmG

ΔG
2 as shown in Fig. 4.4. To obtain the axial force acting on the edge BC, the force

resultant needs to be multiplied by the width ΔH. Thus the axial force in the G-direction on edge BC
is (#G + m#GmG

ΔG
2 )ΔH. Similarly, we can express the axial forces in the G-direction on the the other three
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Figure 4.4: Forces acting on an element in the G-direction

edges. The equilibrium equation in the G-direction is obtained by summing the forces in the G direction,

(
�
�>#G +

m#G

mG

ΔG

2

)
ΔH +

(
��
�*#GH +

m#GH

mH

ΔH

2

)
ΔG −

(
�
�>#G −

m#G

mG

ΔG

2

)
ΔH −

(
��
�*#GH −

m#GH

mH

ΔH

2

)
ΔG = 0 (4.30)

After canceling terms and dividing through by ΔG · ΔH we obtain

m#G

mG
+
m#GH

mH
= 0 (4.31)

This is identical to the equilibrium equation (4.28a) obtained earlier. Similarly, the following equilibrium
equation (4.28b) can be obtained by summing the forces in the H direction.

It is possible to obtain the equilibrium equation in the I-direction by considering the vertical forces
acting on an element as shown in Fig.4.5. Summing forces in the I direction gives

Figure 4.5: Forces acting on an element in the I-direction
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(
��>+G +

m+G

mG

ΔG

2

)
ΔH +

(
���+H +

m+H

mH

ΔH

2

)
ΔG −

(
��>+G −

m+G

mG

ΔG

2

)
ΔH −

(
���+H −

m+H

mH

ΔH

2

)
ΔG + @ (G, H) ΔGΔH = 0

(4.32)

After canceling terms and dividing through by ΔG · ΔH we obtain

m+G

mG
+
m+H

mH
+ @ (G, H) = 0 (4.33)

which is identical to Eqn. (4.19) for quasi-static loading. The other equilibrium equations are obtained
by summing the moments about the G and the H axes.

4.4 Boundary conditions

When solving boundary value problems, we need to define appropriate boundary conditions that
model realistic support conditions.

4.4.1 Clamped Boundaries

Consider a rectangular laminated plate that is clamped on all four edges as shown in Fig. 4.6

Figure 4.6: Clamped rectangular plate

The boundary conditions along edges AD and BC are

F0 = 0 ,
mF0

mG
= 0 , D0 = 0 , E0 = 0 at G = 0, 0 (4.34)

and along edges AB and DC are

F0 = 0 ,
mF0

mH
= 0 , D0 = 0 , E0 = 0 at H = 0, 1 (4.35)

It is possible to have other "clamped" support conditions. For example, consider a laminated plate that
is supported as shown in Fig. 4.7. In this case, the force resultants #G and #GH are negligible at G = 0
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Figure 4.7: Different types of clamped boundary conditions

due to the roller supports and hence the boundary conditions can be specified as

F0 = 0 ,
mF0

mG
= 0 , #G = 0 , #GH = 0 at G = 0 (4.36)

4.4.2 Simply Supported Boundary Conditions

It is possible to have four different types of simply supported boundary conditions on the edges G = 0
and G = 0. They are commonly classified as (1, (2, (3 and (4 simply supported boundary conditions [3,
4].

S1 boundary condition: Axially fixed, transversely fixed

F0 = 0 , "G = 0 , D0 = 0 , E0 = 0 (4.37)

S2 boundary condition: Axially free, transversely fixed

F0 = 0 , "G = 0 , #G = 0 , E0 = 0 (4.38)

S1 and S2 boundary conditions are illustrated in Fig. 4.8. The other two simply supported boundary

Figure 4.8: Different simply supported boundary conditions

conditions are defined as follows.
S3 boundary condition: Axially fixed, transversely free

F0 = 0 , "G = 0 , D0 = 0 , #GH = 0 (4.39)
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S4 boundary condition: Axially free, transversely free

F0 = 0 , "G = 0 , #G = 0 , #GH = 0 (4.40)

The reader is refered to [4] for three-dimensional views of the four different simply supported boundary
conditions. Similar simply supported boundary conditions can be prescribed along the edges H = 0
and H = 1.



Cylindrical Bending of Laminated Plates 5
5.1 Governing equations

We consider a laminated composite plate of width 0 in the G direction. The plate is assumed to be
infinitely long in the H direction and uniformly supported on the edges G = 0 and G = 0 as shown in Fig.
5.1. The loads are assumed to be independent of H, i.e., @ = @ (G, C). In this case, the laminated plate will
deform into a cylindrical shape.

Figure 5.1: Cylindrical bending of a laminated plate

5.1.1 Displacements and strains

Since the loads and boundary conditions are independent of H, the resulting displacements, strains
and stresses are independent of the H coordinate, i.e., m( ·)

mH
= 0. In the case of cylindrical bending, the

mid-surface displacements are functions of the G coordinate and time C. That is,

D0 = D0 (G, C) , E0 = E0 (G, C) , F0 = F0 (G, C) (5.1)

In the case of static loads,

D0 = D0 (G) , E0 = E0 (G) , F0 = F0 (G) (5.2)
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The mid-surface strains and curvatures follow from (3.12), (3.13) and (5.2),

Y0
G =

3D0

3G
, Y0

H =

�
�
��7

0
3E0

3H
= 0 , W0

GH =

�
�
��7

0
mD0

mH
+ mE0

mG
=
3E0

3G
(5.3a)

^G = −
32F0

3G2 , ^H = −
m2F0

mH2 = 0 , ^GH = −2
m2F0

mGmH
= 0 (5.3b)

5.1.2 Force and moment resultants

The force ans moment resultants follow from (3.26) and (5.3)

#G = �11Y
0
G + �16W

0
GH + �11^G = �11

3D0

3G
+ �16

3E0

3G
− �11

32F0

3G2 (5.4a)

#H = �12
3D0

3G
+ �26

3E0

3G
− �12

32F0

3G2 (5.4b)

#GH = �16
3D0

3G
+ �66

3E0

3G
− �16

32F0

3G2 (5.4c)

"G = �11
3D0

3G
+ �16

3E0

3G
− �11

32F0

3G2 (5.4d)

"H = �12
3D0

3G
+ �26

3E0

3G
− �12

32F0

3G2 (5.4e)

"GH = �16
3D0

3G
+ �66

3E0

3G
− �16

32F0

3G2 (5.4f)

5.1.3 Equilibrium Equations

The equilibrium equation (4.28a) reduces to

m#G

mG
+
�
�
���

0
m#GH

mH
= 0 ⇒ 3#G

3G
= 0 (5.5)

Substituting for #G from (5.4a) into (5.5) gives

�11
32D0

3G2 + �16
32E0

3G2 − �11
33F0

3G3 = 0 (5.6)
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The equilibrium equation (4.28b) reduces to

m#GH

mG
+
�
�
��7

0
m#H

mH
= 0 ⇒

3#GH

3G
= 0 (5.7)

Substituting for #GH from (5.4c) into (5.7) gives

�16
32D0

3G2 + �66
32E0

3G2 − �16
33F0

3G3 = 0 (5.8)

The equilibrium equation (4.28c) reduces to

m2"G

mG2 + 2
�
�
�
��

0
m2"GH

mGmH
+
�
�
���

0
m2"H

mH2 + @ (G, H) = 0 ⇒ 32"G

3G2 + @ (G) = 0 (5.9)

Substituting for "G from (5.4d) into (5.9) gives

�11
34F0

3G4
− �11

33D0

3G3 − �16
33E0

3G3 = @ (G) (5.10)

Equations (5.6), (5.8) and (5.10) are the equilibrium equations for cylindrical bending expressed in
terms of the mid-surface displacements D0, E0 and F0.

5.2 General solution for cylindrical bending

The equilibrium equations (5.6) and (5.8) can be expressed in matrix form as[
�11 �16

�16 �66

] {
32D0
3G2

32E0
3G2

}
=

{
�11

�16

}
33F0

3G3 (5.11)

Solving the system in (5.11) one obtains{
32D0
3G2

32E0
3G2

}
=

1
∼
�

[
�66 −�16

−�16 �11

] {
�11

�16

}
33F0

3G3 (5.12)
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which gives

32D0

3G2 =

∼
�
∼
�

33F0

3G3 (5.13a)

32E0

3G2 =

∼
�
∼
�

33F0

3G3 (5.13b)

where the constants
∼
�,
∼
� and

∼
� in (5.13) are related to the laminate rigidities as follows,

∼
� = �11�66 − �2

16 (5.14a)
∼
� = �66�11 − �16�16 (5.14b)
∼
� = �11�16 − �16�11 (5.14c)

Differentiating the equations in (5.13) and substituting into (5.10) we obtain

�11
34F0

3G4
− �11

∼
�
∼
�

34F0

3G4
− �16

∼
�
∼
�

34F0

3G4
= @ (G) (5.15)

which can be factored and written as

∼
�
34F0

3G4
= @ (G) (5.16)

where
∼
� is defined as

∼
�= �11 − �11

∼
�
∼
�
− �16

∼
�
∼
�

(5.17)

Equation (5.16) can be integrated to obtain 33F0
3G3 and the result substituted into the equations in (5.13)

to obtain the differential equations for D0 and E0

32D0

3G2 =

∼
�
∼
�
· 1
∼
�

∫
@ (G) 3G (5.18a)

32E0

3G2 =

∼
�
∼
�
· 1
∼
�

∫
@ (G) 3G (5.18b)

5.3 Solution for uniformly distributed load

If the laminate is subjected to a uniform distributed load @ (G) = @0, then the integral of the load in
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equations (5.18a) and (5.18b) can be explicitly evaluated as∫
@ (G) 3G =

∫
@03G = @0G + @0210 = @0 (G + 210) (5.19)

where 21 is a constant.

When the integral from (5.19) is substituted into (5.18a) and integrated as follows

32D0

3G2 =

∼
�
∼
�
∼
�

∫
@ (G) 3G =

∼
� @0
∼
�
∼
�
(G + 210)

3D0

3G
=

∼
� @0
∼
�
∼
�

(
G2

2
+ 210G + 220

2
)

we obtain the following general form for the mid-surface displacement D0

D0 =

∼
� @0
∼
�
∼
�

(
G3

6
+ 210G

2

2
+ 220

2G + 230
3
)

(5.20)

where 22 and 23 are integration constants. Similarly, the integral (5.19) is substituted into (5.18b) and
integrated

32E0

3G2 =

∼
�
∼
�
∼
�

∫
@ (G) 3G =

∼
� @0
∼
�
∼
�
(G + 210)

3E0

3G
=

∼
� @0
∼
�
∼
�

(
G2

2
+ 210G + 240

2
)

to obtain the following general form for the mid-surface displacement E0

E0 =

∼
� @0
∼
�
∼
�

(
G3

6
+ 210G

2

2
+ 240

2G + 250
3
)

(5.21)

where 24 and 25 are integration constants. Next, (5.16) in integrated four times

∼
�
33F0

3G3 =

∫
@ (G) 3G = @0 (G + 210)

32F0

3G2 =
@0
∼
�

(
G2

2
+ 210G + 260

2
)

3F0

3G
=
@0
∼
�

(
G3

6
+ 210G

2

2
+ 260

2G + 270
3
)

to obtain the following general solution for the transverse deflection F0
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F0 =
@0
∼
�

(
G4

24
+ 210G

3

6
+ 260

2G2

2
+ 270

3G + 280
4
)

(5.22)

where 26, 27 and 28 are intergration constants. The eight integration constants 21, . . . , 28 in (5.20), (5.21)
and (5.22) are obtained by satisfying the relevant boundary conditions at G = 0 and G = 0.

The force resultant #G is obtained by substituting for D0, E0 and F0 from (5.20), (5.21) and (5.22) into
(5.4a),

#G = �11
3D0

3G
+ �16

3E0

3G
− �11

32F0

3G2

=
�11

∼
� @0
∼
�
∼
�

(
G2

2
+ 210G + 220

2
)
+ �16

∼
� @0
∼
�
∼
�

(
G2

2
+ 210G + 240

2
)
− �11@0

∼
�

(
G2

2
+ 210G + 260

2
)

=
@0
∼
�
∼
�

(
�11

∼
� +�16

∼
� −�11

∼
�

) (
G2

2
+ 210G

)
+ @00

2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
=
@0
∼
�
∼
����

���
��

���
�:0(

�11
∼
� +�16

∼
� −�11

∼
�

) (
G2

2
+ 210G

)
+ @00

2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
(5.23a)

where it can be shown that the first term is zero based on the definitions for
∼
�,
∼
� and

∼
� in (5.14). Thus,

the force resultant #G reduces to

#G =
@00

2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
(5.24)

The force resultant #GH is obtained by substituting for D0, E0 and F0 from (5.20), (5.21) and (5.22) into
(5.4c),

#GH = �16
3D0

3G
+ �66

3E0

3G
− �16

32F0

3G2

=
@0
∼
�
∼
����

���
���

���:
0(

�16
∼
� +�66

∼
� −�16

∼
�

) (
G2

2
+ 210G

)
+ @00

2

∼
�
∼
�

(
�16

∼
� 22 + �66

∼
� 24 − �16

∼
� 26

)
which simplifies to

#GH =
@00

2

∼
�
∼
�

(
�16

∼
� 22 + �66

∼
� 24 − �16

∼
� 26

)
(5.26)

The moment resultant "G is obtained by substituting for D0, E0 and F0 from (5.20), (5.21) and (5.22)
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into (5.4d),

"G = �11
3D0

3G
+ �16

3E0

3G
− �11

32F0

3G2

=
@0
∼
�
∼
�

(
�11

∼
� +�16

∼
� −�11

∼
�

) (
G2

2
+ 210G

)
+ @00

2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
= −@0

∼
���

���
���

���:
∼
�(

�11 − �11

∼
�
∼
�
− �16

∼
�
∼
�

) (
G2

2
+ 210G

)
+ @00

2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
which simplifies to

"G = −@0

(
G2

2
+ 210G

)
+ @00

2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
(5.28)

5.4 Simply supported laminated plate under uniform distributed load

Let’s consider the cylindrical bending of a laminate that is simply supported at the edges and subjected
to a uniform distributed load of magnitude @0 in the positive I direction. The edge G = 0 is subjected to
(1 boundary conditions (F0 = 0, "G = 0, D0 = 0, E0 = 0) and the edge G = 0 is subjected to (4 boundary
conditions (F0 = 0, "G = 0, #G = 0, #GH = 0).

Figure 5.2: Cylindrical bending of a simply supported plate subjected to a uniform distributed load

5.4.1 Determination of constants

The eight integration constants 21, . . . , 28 in (5.20), (5.21), (5.22), (5.24), (5.26) and (5.28) are obtained by
satisfying the relevant boundary conditions at G = 0 and G = 0.
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Boundary conditions at G = 0

D0 (0) = 0 ⇒ 23 = 0 (5.29a)

E0 (0) = 0 ⇒ 25 = 0 (5.29b)

F0 (0) = 0 ⇒ 28 = 0 (5.29c)

"G (0) = 0 ⇒ @00
2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
= 0

⇒ �11
∼
� 22 + �16

∼
� 24 − �11

∼
� 26 = 0 (5.29d)

Boundary conditions at G = 0

F0 (0) = 0 ⇒ @0
∼
�

(
04

24
+ 210

4

6
+ 260

4

2
+ 270

4 +��>
0

28 04
)
= 0

⇒ 1 + 421 + 1226 + 2427 = 0 (5.30a)

"G (0) = 0 ⇒ −@0

(
02

2
+ 210

2
)
+ @00

2

∼
�
∼
�

(
�11

∼
� 22 + �16

∼
� 24 − �11

∼
� 26

)
︸                                       ︷︷                                       ︸

= 0 by equation (5.29d)

= 0

⇒ 02

2
+ 210

2 = 0 ⇒ 21 = −
1
2

(5.30b)

#G (0) = 0 ⇒ �11
∼
� 22 + �16

∼
� 24 − �11

∼
� 26 = 0 (5.30c)

#GH (0) = 0 ⇒ �16
∼
� 22 + �66

∼
� 24 − �16

∼
� 26 = 0 (5.30d)

Equations (5.29d), (5.30a), (5.30c), and (5.30d) need to be solved to obtain 22, 24, 26 and 27. The solution
22 = 24 = 26 = 0 satisfies equations (5.29d), (5.30c), and (5.30d). By equation (5.30a):

1 +��>
− 1

2
421 +��

�*0
1226 + 2427 = 0 ⇒ 27 =

1
24

In summary, the constants 28 are

21 = −
1
2

; 22 = 23 = 24 = 25 = 26 = 0 ; 27 =
1

24
; 28 = 0
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5.4.2 Mid-surface displacements

We obtain the final solutions for the mid-surface displacements by substituting for the constants 28 into
(5.20), (5.21) and (5.22). The mid-surface displacement D0 simplifies to

D0(G) =
∼
� @0
∼
�
∼
�

(
G3

6
+��>

− 1
2

21 0
G2

2
+��>

0
22 02G +��>

0
23 03

)
=

∼
� @0G

2

12
∼
�
∼
�
(2G − 30) (5.31a)

The mid-surface displacement E0 simplifies to

E0(G) =
∼
� @0
∼
�
∼
�

(
G3

6
+��>

−1
2

21 0
G2

2
+��>

0
24 02G +��>

0
25 03

)
=

∼
� @0G

2

12
∼
�
∼
�
(2G − 30) (5.32a)

and the mid-surface displacement F0 becomes

F0(G) =
@0
∼
�

©­« G
4

24
+ ��>

− 1
2

21 0G3

6
+ ��>

0
26 02G2

2
+��>

1
24

27 03G +��>
0

28 04ª®¬
=
@0G

24
∼
�

(
G3 − 20G2 + 03

)
(5.33a)

5.4.3 Mid-surface strains and curvatures

Once we have D0 (G) , E0 (G) , F0 (G) the mid-surface strains and curvatures can be calculated at any
location. The mid-surface strains strains are

Y0
G =

3D0

3G
=
3

3G

[ ∼
� @0

12
∼
�
∼
�

(
2G3 − 30G2

)]
=

∼
� @0

2
∼
�
∼
�
G (G − 0) (5.34a)

Y0
H = 0 (5.34b)

W0
GH =

3E0

3G
=

∼
� @0

2
∼
�
∼
�
G (G − 0) (5.34c)
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Note that the in-plane normal strain Y0
G and in-plane W0

GH are not zero if the laminate constants
∼
� and

∼
�

are non-zero. The curvatures reduce to

^G = −
32F0

3G2 = − @0

2
∼
�
G (G − 0) (5.35a)

^H = 0 (5.35b)

^GH = 0 (5.35c)

5.4.4 Force and moment resultants

Once the constants 21, . . . , 28 have been determined from the boundary conditions, the force and
moment resultants are obtained from (5.24), (5.26) and (5.28),

#G (G) = 0, #GH (G) = 0, "G (G) =
@0

2
G(0 − G) (5.36)

It makes sense that the force resultants #G and #GH are zero since the simple support at G = 0 is
subjected to S4 boundary conditions wherein #G (0) = 0 and #GH (0) = 0. Depending on the stacking
sequence, the force resultant #G may be non-zero if the support at G = 0 is restrained against axial
displacement.

5.4.5 Maximum deflection

The maximum deflection Fmax
0 occurs at the mid-span G = 0/2

Fmax
0 = F0

(0
2

)
=
@0
0
2

24
∼
�

(
03

8
− 0

3

2
+ 03

)
=

5@00
4

384
∼
�

(5.37)

Recall that,
∼
�= �11 − �11

∼
�
∼
�
− �16

∼
�
∼
�

. Therefore, the in-plane extensional rigidities �8 9 and the bending-
extension rigidities �8 9 also influence the transverse deflection!

If the deflection is calculated by neglecting the elastic coupling rigidities (i.e., by setting
∼
�= 0,

∼
�= 0),

then the maximum deflection F̂max
0 depends only on the bending rigidity �11 since

F̂max
0 =

5@00
4

384�11
(5.38)



5 Cylindrical Bending of Laminated Plates 84

Therefore, the ratio of the maximum deflections can be expressed as

Fmax
0

F̂max
0

=
�11
∼
�

=

∼
� +�11

∼
�
∼
�
+ �16

∼
�
∼
�

∼
�

= 1 + �11
∼
�

∼
�
∼
�
+ �16

∼
�

∼
�
∼
�

= 1+ ∼� (5.39)

where
∼
�=

�11
∼
�

∼
�
∼
�
+ �16

∼
�

∼
�
∼
�

. Thus,

Fmax
0 =

(
1+ ∼�

)
F̂max

0 (5.40)

It can be shown that
∼
� is always positive. Therefore, the elastic coupling rigidities tends to increase the

maximum deflection of the laminate.

5.4.6 In-plane displacements at the support G = 0

The axial displacement of the laminate at the right support (i.e. at G = 0) is

D0(0) = −
∼
� @00

3

12
∼
�
∼
�

(5.41)

The axial displacement can be positive or negative depending on the direction of @0 and the sign of
the coupling coefficients. Note that in the case of a laminate, the axial displacement, is a linear effect.
The axial displacement will be in the opposite direction if the direction of the applied load is reversed.
This is qualitatively different from curvature shortening which is a non-linear effect. In the case of
curvature shortening, the right support will move inward by an amount _ where

_ =
8X2

30
(5.42)

where X is the maximum deflection. Thus, the curvature shortening _ is always positive and is
proportional to the square of the maximum deflection, i.e., this is not a linear effect, unlike what we
see in laminated composites.

It is noted that in the case of a laminated composite plate, the right support can displace in the H
direction if the coefficient

∼
� is non-zero since

E0(0) = −
∼
� @00

3

12
∼
�
∼
�

(5.43)
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EXAMPLE 5.1: Cylindrical bending of a simply supported laminated plate subjected to a uniform
distributed load

Let’s consider the cylindrical bending of a unidirectional IM7/8552 carbon fiber-reinforced [02/902]
laminated plate of length 0 = 0.5 m that is simply supported at the edges as shown in Fig. 5.3. The
laminated plate is subjected to a distributed load of magnitude 1 N/m2, i.e., @0 = −1 N/m2. The edge
G = 0 is subjected to (1 boundary conditions (F0 = 0, "G = 0, D0 = 0, E0 = 0) and the edge G = 0
is subjected to (4 boundary conditions (F0 = 0, "G = 0, #G = 0, #GH = 0). The laminate thickness
� = 0.8 mm.

Figure 5.3: Cylindrical bending of a [02/902] unidirectional fiber reinforced laminate subjected to
S1-S4 simply supported boundary conditions

The relevant elastic rigidities of the [02/902] laminate are

�11 = 71.20 × 106 N/m, �66 = 3.84 × 106 N/m, �11 = −1.271 × 104 N, �11 = 3.80 N ·m (5.44)

Note that the elastic rigidities �16 and �16 are identically zero for the cross-ply laminate. The constants
∼
�,
∼
�,
∼
� and

∼
� are evaluated using (5.14) and (5.17),

∼
�= 2.73 × 1014 N2/m2,

∼
�= −4.88 × 1010 N2/m,

∼
�= 0 N2/m,

∼
�= 1.528 N ·m (5.45)

The deflection F0(G) of the laminated plate is evaluated using (5.33a) and is shown in Fig. 5.4.

The maximum deflection of the plate

Fmax
0 =

5@00
4

384
∼
�
= −0.532 mm (5.46)



5 Cylindrical Bending of Laminated Plates 86

Figure 5.4: Deflection F0 of a [02/902] laminate subjected to S1-S4 simply supported boundary
conditions

Since the laminate is unsymmetric, the bending-extension coupling rigiditiy �11 induces an in-plane
displacement D0 that is shown in Fig. 5.5.

Figure 5.5: Mid-surface axial displacement D0 of a [02/902] laminate subjected to S1-S4 simply sup-
ported boundary conditions

The axial displacement D0(0) at the right support is

D0(0) = −
∼
� @00

3

12
∼
�
∼
�
= −1.217 × 10−3 mm (5.47)

Although the axial displacement D0 is small relative to F0, it cannot be ignored in our analysis. The
through-thickness variation of the normal strain YG and the normal stress fG in the global coordinate
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system are shown in Fig. 5.6. As expected, the normal stress fG is tensile on the bottom surface and
compressive on the top surface. However, portions of the second ply (0◦ lamina) are subjected to a
compressive normal stress fG although it lies below the mid-surface of the laminate.

Figure 5.6: Normal strain YG and normal stress fG at G = 0/2 for a [02/902] laminate subjected to S1-S4
simply supported boundary conditions

The through-thickness variation of the longitudinal normal stress f1 and the transverse normal stress
f2 in the principal material coordinate system are shown in Fig. 5.7.

Figure 5.7: Normal stresses f1 and f2 at G = 0/2 for a [02/902] laminate subjected to S1-S4 simply
supported boundary conditions

The largest normal stress B1 in the fiber direction occurs on the bottom surface. The 90◦ plies are
subjected to a compressive transverse normal stress B2 with the largest value on the top surface.
The minimum safety factor (min

5 0
= 1785 and it occurs on the top surface of the laminate. Note that

although the laminate will not fail due to the large safety factor, the transverse deflection Fmax
0 is

fairly large relative to the thickness of the laminate.
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Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness ℎ of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

5.1 Consider the cylindrical bending of a laminated composite plate of length 0 that is clamped on
both edges (i.e., F0 = mF0/mG = D0 = E0 = 0 at G = 0 and G = 0). The laminate is subjected to a
uniform distributed load @(G) = @0.

(a) Evaluate the constants 21, 22, . . . , 28 in the general solution for a uniformly distributed load
using the boundary conditions.

(b) Provide analytical expressions for the mid-surface displacements D0(G), E0(G) and F0(G), the
mid-surface strains Y0

G (G) and W0
GH (G), the curvature ^G (G) and the bending moment resultant

"G (G).
(c) Analyze the cylindrical bending of a unidirectional carbon fiber-reinforced [0/90/45] laminate

that is clamped on both edges. The length of the laminate 0 = 0.5 m and it is subjected to a
downward uniform distributed load of magnitude 1 N/m2. Plot the mid-surface displace-
ments D0(G) and E0(G), the deflection F0(G) and the bending moment "G (G). Do the plots
make sense? Plot the through-thickness variation of the strain YG and the stresses fG and gGH
at G = 0 and G = 0/2. Discuss whether the direction and magnitude of the normal stress fG
makes sense at the clamped edge and at the mid-span.

5.2 Consider the cylindrical bending of a cross-ply laminate of length 0. It is subjected to a uniform
distributed load @(G) = @0 and the edges at G = 0 and G = 0 are both subjected to S1 boundary
conditions (F0 = 0,"G = 0, D0 = E0 = 0). Evaluate the constants 21, 22, . . . , 28 in the general solution
for a uniformly distributed load using the boundary conditions. Analyze the cylindrical bending
of a unidirectional carbon fiber-reinforced [02/902] laminate. The length of the laminate 0 = 0.5 m
and it is subjected to a downward uniform distributed load of magnitude 1 N/m2.
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(a) Plot the deflection F0(G) and compare it with the deflection obtained in Example 5.1 of the
lecture notes for S1-S4 boundary conditions. Does the axial boundary conditions at G = 0
influence the transverse deflection of the laminated plate? If it does, explain why.

(b) Plot the mid-surface displacement D0(G). Does it satisfy the S1 boundary conditions at G = 0
and G = 0? Discuss the variation of D0(G).

(c) Determine the in-place force resultant #G (G). Is it non-zero? If it is, can you explain why?
(d) Plot the through-thickness variation of the strain YG and the stress fG at the mid-span G = 0/2.

Discuss whether the direction and magnitude of the normal stress fG makes sense.



Navier Solution for Bending of Rectangular Plates 6
In this chapter, we derive analytical solutions for the bending of simply supported laminated rect-
angular plates using the solution process originally introduced by Navier for isotropic rectangular
plates.

6.1 Series representation of applied loads

Consider a rectangular laminated plate that is simply supported on all four edges and subjected to a
transverse distributed load @ (G, H) as shown in Fig. 6.1.

Figure 6.1: Simply supported laminated plate subjected to a distributed load

The distributed load @ (G, H) can be represented by the double Fourier series

@ (G, H) =
∞∑
<=1

∞∑
==1

@<= sin
<cG

0
sin

=cH

1
(6.1)

where the load coefficients @<= are obtained by multiplying both sides of equation (6.1) by sine
functions and double integrating as follows,∫ 1

0

∫ 0

0
@ (G, H) sin

:cG

0
sin

;cH

1
3G3H =

∞∑
<=1

∞∑
==1

∫ 1

0

∫ 0

0
@<= sin

<cG

0
sin

=cH

1
sin

:cG

0
sin

;cH

1
3G3H

=

∞∑
<=1

∞∑
==1

@<=

(∫ 0

0
sin

<cG

0
sin

:cG

0
3G

) (∫ 1

0
sin

=cH

1
sin

;cH

1
3H

)
(6.2)
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where : and ; are arbitrary integers. Since

∫ 0

0
sin

<cG

0
sin

:cG

0
3G =


0 for < ≠ :

0
2 for < = :

(6.3)

it follows from equations (6.2) and (6.3)∫ 1

0

∫ 0

0
@ (G, H) sin

:cG

0
sin

;cH

1
3G3H = @:;

(0
2

) (
1

2

)
(6.4)

Since : and ; are arbitrary in (6.4), they can be replaced by < and =, respectively, to obtain

@<= =
4
01

∫ 1

0

∫ 0

0
@ (G, H) sin

<cG

0
sin

=cH

1
3G3H (6.5)

6.1.1 Uniform distributed load

Consider a laminated plate that is subjected to a uniform distributed load of magnitude @0 acting
vertically downward as shown in Fig. 6.2.

Figure 6.2: Simply supported laminated plate subjected to a uniform distributed load

In the case of a uniform distributed load

@ (G, H) = −@0 (6.6)

The load coefficients @<= for a uniform distributed are evaluated using (6.5) and (6.6)

@<= =
−4@0

01

(
− 0

<c
cos

<cG

0

)���0
0
·
(
− 1
=c

cos
=cH

1

)����1
0

(6.7a)

= −4@0

��01

(
��01

<=c2

)
[(−1)< − 1] · [(−1)= − 1] (6.7b)

which reduces to
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@<= = −
4@0

<=c2 [(−1)< − 1] · [(−1)= − 1] (<, = = 1, 2, 3, . . .) (6.8)

Alternatively, since [(−1)< − 1] equals -2 when < is odd and 0 when < is even, the load coefficients
@<= can be written as

@<= =


− 16@0
<=c2 for <, = = 1, 3, 5, . . . (odd < and =)

0 for <, = = 2, 4, 6, . . . (even < or =)
(6.9)

6.1.2 Point load

Consider a laminated plate that is subjected to a point load of magnitude % acting downwards at
(G0, H0) as shown in Fig. 6.3.

Figure 6.3: Simply supported laminated plate subjected to a point load

The point load can be represented by a Dirac delta function:

@ (G, H) = −%X (G0, H0) (6.10)

where X is the Dirac delta function. The load coefficients @<= for a point load are evaluated using (6.5)
and (6.10)

@<= =
4
01

∫ 1

0

∫ 0

0
(−%) X (G0, H0) sin

<cG

0
sin

=cH

1
3G3H (6.11)

Using the sifting property of the Dirac delta function, it follows from (6.11) that the load coefficients
@<= for a point load are

@<= = −
4%
01

sin
<cG0

0
sin

=cH0

1
(<, = = 1, 2, 3, . . .) (6.12)

6.2 Bending of specially orthotropic laminated plates
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In this section, we derived an analytical solution for the bending of specially orthotropic rectangular
laminated plates that are simply supported on all four edges. The plate is subjected to S1 boundary
conditions on all four edges as shown in Fig. 6.4. Specifically,

F0 = 0 , "G = 0 , D0 = 0 , E0 = 0 at G = 0, 0

F0 = 0 , "H = 0 , D0 = 0 , E0 = 0 at H = 0, 1
(6.13)

Figure 6.4: Simply supported laminated plate subjected S1 boundary conditions on all four edges

A laminate is said to be specially orthotropic if

[�] = [0] , �16 = �26 = 0, �16 = �26 = 0 (6.14)

Examples of specially orthotropic laminates

1. Symmetric cross-ply laminates, e.g., [0/90/0] , [0/90]B . . . etc.
2. There are some uncommon angle ply laminates that behave like specially orthotropic lami-

nates, e.g., [(±\)B /(∓\)B] such as [30/−30/−30/30/−30/30/30/−30]. This is a special type of
anti-symmetric balanced laminates.

6.2.1 Midsurface displacements

Specially orthotropic laminates do not exhibit bending-extension coupling since [�] = [0]. Therefore,
when the laminate is subjected to bending, the mid-surface strains will be zero. Therefore, it is assumed
that the mid-surface in-plane displacements D0 and E0 are zero and the deflection F0 is a function of G
and H, i.e.,

D0 (G, H) = E0 (G, H) = 0, F0 = F0 (G, H) (6.15)
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6.2.2 Midsurface strains and curvatures

Substituting for the assumed displacements D0, E0 and F0 into (3.12) and (3.13), yields the following
expressions for the mid-surface strains and curvatures

Y0
G = 0, Y0

H = 0, W0
GH = 0 (6.16)

^G = −
m2F0

mG2 , ^H = −
m2F0

mH2 , ^GH = −2
m2F0

mGmH
(6.17)

6.2.3 Force and moment resultants

Substituting for the mid-surface strains (6.16), curvatures (6.17) and laminate rigidities (6.14) into
(3.21)) and (3.24) gives the force resultants

#G = 0, #H = 0, #GH = 0 (6.18)

and moment resultants

"G = −�11
m2F0

mG2 − �12
m2F0

mH2

"H = −�12
m2F0

mG2 − �22
m2F0

mH2

"GH = −2�66
m2F0

mGmH

(6.19)

6.2.4 Equilibrium equations

The equilibrium equations (4.28a) and (4.28b), namely

m#G

mG
+
m#GH

mH
= 0

m#GH

mG
+
m#H

mH
= 0

(6.20)

are identically satisfied since #G = #H = #GH = 0. The equilibrium equation (4.28c), namely

m2"G

mG2 + 2
m2"GH

mGmH
+
m2"H

mH2 + @ (G, H) = 0 (6.21)
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needs to be satisfied at every point in the laminated plate. Substituting for the bending moments from
(6.19) into (6.21)

−�11
m4F0

mG4
− �12

m4F0

mG2mH2 − 4�66
m4F0

mG2mH2 − �12
m4F0

mG2mH2 − �22
m4F0

mH4
+ @ (G, H) = 0 (6.22)

which can be factored as

�11
m4F0

mG4
+ 2 (�12 + 2�66)

m4F0

mG2mH2 + �22
m4F0

mH4
= @ (G, H) (6.23)

6.2.5 Navier solution

Equation (6.23) is a fourth-order partial differential equation for the deflection F0(G, H). The solution
procedure, as suggested by Navier, involves assuming a double Fourier sine series expansion for the
deflection

F0 (G, H) =
∞∑
<=1

∞∑
==1

,<= sin
<cG

0
sin

=cH

1
(6.24)

where,<= are the deflection coefficients. Substitution of (6.24) and the Fourier series expansion (6.1)
for @ (G, H) into (6.23) gives

∞∑
<=1

∞∑
==1

{
,<=

[
�11

(<c
0

)4
+ 2 (�12 + 2�66)

(<c
0

)2 (=c
1

)2
+ �22

(=c
1

)4
]
− @<=

}
sin

<cG

0
sin

=cH

1
= 0

(6.25)
Since this equation has to hold true for arbitrary G and H, the term in braces must equal zero

,<=

[
�11

(<c
0

)4
+ 2 (�12 + 2�66)

(<c
0

)2 (=c
1

)2
+ �22

(=c
1

)4
]
= @<= (6.26)

from which it follows that

,<= =
@<=

�11
(
<c
0

)4 + 2 (�12 + 2�66)
(
<c
0

)2 (
=c
1

)2 + �22
(
=c
1

)4 (6.27)

Thus, the deflection,<= can be determined from the load coefficients @<=, the bending rigidities �11,
�22, �12 and �66 and the length 0 and width 1 of the rectangular plate. Subsequently, the deflection
F0(G, H) can be calculated at any point in the plate using (6.24).
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The curvatures are obtained by substituting for the deflection F0(G, H) from (6.24) into (6.17)

^G = −
m2F0

mG2 =

∞∑
<=1

∞∑
==1

,<=

(<c
0

)2
sin

<cG

0
sin

=cH

1

^H = −
m2F0

mH2 =

∞∑
<=1

∞∑
==1

,<=

(=c
1

)2
sin

<cG

0
sin

=cH

1

^GH = −2
m2F0

mGmH
= −2

∞∑
<=1

∞∑
==1

,<=

(
<=c2

01

)
cos

<cG

0
cos

=cH

1

(6.28)

The through-thickness variations of strains and stresses can be obtained at any location (G, H) based on
the mid-surface strains (6.16) and curvatures (6.28) at that location using (3.16).

The infinite series (6.24) is usually truncated to a finite number of terms when finding the displacements,
strains and stresses, as

F0 (G, H) =
#B∑
<=1

#B∑
==1

,<= sin
<cG

0
sin

=cH

1
(6.29)

where #B defines the number of terms retained in the series. The convergence of the strains and the
stresses is typically slower than the deflection since they involve the derivatives of the deflection with
respect to the spatial coordinates. Therefore, it is important to make sure that a sufficient number of
terms have been used to obtain the strains and stresses accurately.

6.3 Bending of cross-ply laminated plates

In this section, we develop analytical solutions for cross-ply laminates that may exhibit bending-
extension coupling. Consider simply supported laminates that are subjected to S2 boundary conditions
on all four edges as shown in Fig. 6.5. on all four edges as shown in Fig. 6.4. Specifically,

F0 = 0 , "G = 0 , #G = 0 , E0 = 0 at G = 0, 0

F0 = 0 , "H = 0 , D0 = 0 , #H = 0 at H = 0, 1
(6.30)

In the case of a cross ply laminate, &16 = &26 = 0 for all lamina. Therefore,

�16 = �26 = 0, �16 = �26 = 0, �16 = �26 = 0 (6.31)

The transverse loading @(G, H) is expanded

@ (G, H) =
∞∑
<=1

∞∑
==1

@<= sin
<cG

0
sin

=cH

1
(6.32)
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Figure 6.5: Simply supported laminated plate subjected S2 boundary conditions on all four edges

where the load coefficients @<= are evaluated using (6.5) and are listed in (6.8) and (6.12) for a uniform
distributed load and a point load, respectively.

6.3.1 Midsurface displacements

In the case of unsymmetric cross-ply laminates, bending will induce in-plane mid-surface extensional
strains and displacements D0 and E0. The solution procedure, suggested by Navier, involves assuming
the following double Fourier series expansion for the mid-surface displacements D0 and E0 and the
deflection F0

D0 (G, H) =
∞∑
<=1

∞∑
==1

*<= cos
<cG

0
sin

=cH

1

E0 (G, H) =
∞∑
<=1

∞∑
==1

+<= sin
<cG

0
cos

=cH

1

F0 (G, H) =
∞∑
<=1

∞∑
==1

,<= sin
<cG

0
sin

=cH

1

(6.33)

6.3.2 Midsurface strains and curvatures

The midsurface strains, obtained by substituting for the mid-surface displacements from (6.33) into
(3.12), are

Y0
G =

mD0

mG
=

∞∑
<=1

∞∑
==1

*<=

(
−<c
0

)
sin

<cG

0
sin

=cH

1

Y0
H =

mE0

mH
=

∞∑
<=1

∞∑
==1

+<=

(
−=c
1

)
sin

<cG

0
sin

=cH

1

W0
GH =

mD0

mH
+ mE0

mG
=

∞∑
<=1

∞∑
==1

[
*<=

(=c
1

)
++<=

(<c
0

)]
cos

<cG

0
cos

=cH

1

(6.34)
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The midsurface curvatures, obtained by substituting for the mid-surface displacements from (6.33)
into (3.13), are

^G = −
m2F0

mG2 =

∞∑
<=1

∞∑
==1

,<=

(<c
0

)2
sin

<cG

0
sin

=cH

1

^H = −
m2F0

mH2 =

∞∑
<=1

∞∑
==1

,<=

(=c
1

)2
sin

<cG

0
sin

=cH

1

^GH = −2
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mGmH
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∞∑
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==1
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<=c2

01
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1

(6.35)

6.3.3 Force and moment resultants

The force resultants, obtained using (3.13), (6.34), (6.35), are

#G = �11Y
0
G + �12Y

0
H + �11^G + �12^H

=

∞∑
<=1
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==1

[
−�11
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0

)
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1

)
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(
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+ �12

(=c
1

)2
)
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]
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0
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=cH

1

(6.36a)

#H = �12Y
0
G + �22Y

0
H + �12^G + �22^H

=
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=cH

1

(6.36b)

#GH = �66W
0
GH + �66^GH

=

∞∑
<=1

∞∑
==1

[(
*<=

(=c
1

)
++<=

(<c
0

))
�66 − 2�66

(
<=c2

01

)
,<=

]
cos

<cG

0
cos

=cH

1
(6.36c)
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The moment resultants, obtained using (3.24), (6.34), (6.35), are

"G = �11Y
0
G + �12Y

0
H + �11^G + �12^H

=

∞∑
<=1

∞∑
==1

[
−�11

(<c
0

)
*<= − �12

(=c
1

)
+<= +

(
�11

(<c
0

)2
+ �12

(=c
1

)2
)
,<=

]
sin

<cG

0
sin

=cH

1

(6.37a)

"H = �12Y
0
G + �22Y

0
H + �12^G + �22^H

=

∞∑
<=1

∞∑
==1

[
−�12

(<c
0

)
*<= − �22

(=c
1

)
+<= +

(
�12

(<c
0

)2
+ �22

(=c
1

)2
)
,<=

]
sin

<cG

0
sin

=cH

1

(6.37b)

"GH = �66W
0
GH + �66^GH

=

∞∑
<=1

∞∑
==1

[(
*<=

(=c
1

)
++<=

(<c
0

))
�66 − 2�66

(
<=c2

01

)
,<=

]
cos

<cG

0
cos

=cH

1
(6.37c)

6.3.4 Equilibrium equations

Substituting the force resultants #G and #GH from (6.36a) and (6.36c) into the equilibrium equation
(4.28a)

m#G

mG
+
m#GH

mH
= 0 (6.38)

gives
∞∑
<=1

∞∑
==1

[− 11*<= −  12+<= −  13,<=] cos
<cG

0
sin

=cH

1
= 0 (6.39)

which reduces to

 11*<= +  12+<= +  13,<= = 0 (6.40)

where,

 11 = �11

(<c
0

)2
+ �66

(=c
1

)2

 12 = (�12 + �66)
(<c
0

) (=c
1

)
 13 = −�11

(<c
0

)3
− �12

(=c
1

)2 (<c
0

)
− 2�66

(
<=c2

01

) (=c
1

)
= −�11

(<c
0

)3
− (�12 + 2�66)

(<c
0

) (=c
1

)2

(6.41)
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Substituting the force resultants #GH and #H from (6.36c) and (6.36b) into the equilibrium equation
(4.28b)

m#GH

mG
+
m#H

mH
= 0 (6.42)

gives
∞∑
<=1

∞∑
==1

[− 21*<= −  22+<= −  23,<=] sin
<cG

0
cos

=cH

1
= 0 (6.43)

which reduces to

 21*<= +  22+<= +  23,<= = 0 (6.44)

where
 21 = (�12 + �66)

(<c
0

) (=c
1

)
 22 = �66

(<c
0

)2
+ �22

(=c
1

)2

 23 = −2�66

(<c
0

)2 (=c
1

)
− �12

(<c
0

)2 (=c
1

)
− �22

(=c
1

)3

= − (�12 + 2�66)
(<c
0

)2 (=c
1

)
− �22

(=c
1

)3

(6.45)

Substituting the moment resultants "G , "H and "GH from (6.37) into the equilibrium equation (4.28c)

m2"G

mG2 + 2
m2"GH

mGmH
+
m2"H

mH2 + @ (G, H) = 0 (6.46)

gives
∞∑
<=1

∞∑
==1

[− 31*<= −  32+<= −  33,<= + @<=] sin
<cG

0
sin

=cH

1
= 0 (6.47)

which reduces to

 31*<= +  32+<= +  33,<= = @<= (6.48)
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where
 31 = −�11

(<c
0

)3
− 2�66

(<c
0

) (=c
1

)2
− �12

(<c
0

) (=c
1

)2

= −�11

(<c
0

)3
− (�12 + 2�66)

(<c
0

) (=c
1

)2

 32 = −�12

(<c
0

)2 (=c
1

)
− 2�66

(<c
0

)2 (=c
1

)
− �22

(=c
1

)3

= − (�12 + 2�66)
(<c
0

)2 (=c
1

)
− �22

(=c
1

)3

 33 = �11

(<c
0

)4
+ �12

(=c
1

)2 (<c
0

)2
+ 4�66

(<c
0

)2 (=c
1

)2

+
[
�12

(<c
0

)2
+ �22

(=c
1

)2
] (=c

1

)2

= �11

(<c
0

)4
+ 2 (�12 + 2�66)

(<c
0

)2 (=c
1

)2
+ �22

(=c
1

)4

(6.49)

6.3.5 Solution for the displacement coefficients

Equations (6.40), (6.44) and (6.48) can be written in matrix form as:


 11  12  13

 12  22  23

 13  23  33



*<=

+<=

,<=

 =


0
0
@<=

 (6.50)

where  8 9 are defined in (6.41), (6.45) and (6.49) and [ ] is symmetric since  98 =  8 9 . The displace-
ment coefficients*<=, +<= and,<= can be obtained by solving equation (6.50) numerically for each
combination of < and =. Once we have the displacement coefficients*<=, +<= and,<=, the midsurface
strains and curvatures at any location (G, H) can be determined using (6.34) and (6.35). In practice, We
usually truncate the infinite series to a finite number of terms

D0 (G, H) =
#B∑
<=1

#B∑
==1

*<= cos
<cG

0
sin

=cH

1

E0 (G, H) =
#B∑
<=1

#B∑
==1

+<= sin
<cG

0
cos

=cH

1

F0 (G, H) =
#B∑
<=1

#B∑
==1

,<= sin
<cG

0
sin

=cH

1

(6.51)

where #B defines the number of terms retained in the series. As discussed earlier, it is necessary to
check for the convergence of displacements and stresses to make sure that a sufficient number of terms
has been used in the series solution.
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6.4 Bending of antisymmetric angle-ply laminated plates

It is possible to develop a Navier solution for antisymemtric angle-ply laminates for certain bound-
ary conditions. Consider an antisymmetric angle-ply laminate that is subjected to the following S3

boundary conditions on all four edges as shown in Fig. 6.6,

F0 = 0 , "G = 0 , D0 = 0 , #GH = 0 at G = 0, 0

F0 = 0 , "H = 0 , #GH = 0 , E0 = 0 at H = 0, 1
(6.52)

Figure 6.6: Simply supported laminated plate subjected S3 boundary conditions on all four edges

An antisymmetric angle-ply laminate has an even number of orthotropic layers with the principal mate-
rial directions oriented at \ on one side and −\ on the other side of the midsurface, with 0◦ ≤ \ ≤ 90◦. Ex-
amples of antisymmetric laminates include [−45/30/−15/15/−30/45] and [0/45/90/60/−60/−90/−45/0].
In the case of an antisymmetic angle-ply laminates, the following laminate rigidities are zero,

�16 = �26 = 0, �11 = �22 = �12 = �66 = 0, �16 = �26 = 0 (6.53)

The Navier solutions for the midsurface displacements of antisymmetric angle-ply laminates is

D0 (G, H) =
∞∑
<=1

∞∑
==1

*<= sin
<cG

0
cos

=cH

1

E0 (G, H) =
∞∑
<=1

∞∑
==1

+<= cos
<cG

0
sin

=cH

1

F0 (G, H) =
∞∑
<=1

∞∑
==1

,<= sin
<cG

0
sin

=cH

1

(6.54)

We can use a similar procedure as before to solve for the displacement coefficients*<=, +<= and,<=.
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In the case of antisymmetric laminates we obtain the following system of equations


 11  12  13

 12  22  23

 13  23  33



*<=

+<=

,<=

 =


0
0
@<=

 (6.55)

where the coefficients  8 9 in the square matrix are

 11 = �11

(<c
0

)2
+ �66

(=c
1

)2

 12 = (�12 + �66)
(<c
0

) (=c
1

)
 13 = −3�16

(<c
0

)2 (=c
1

)
− �26

(=c
1

)3

 22 = �22

(=c
1

)2
+ �66

(<c
0

)2

 23 = −�16

(<c
0

)3
− 3�26

(<c
0

) (=c
1

)2

 33 = �11

(<c
0

)4
+ �22

(=c
1

)4
+ 2 (�12 + 2�66)

(<c
0

)2 (=c
1

)2

(6.56)

Upon solving for the displacement coefficients *<=, +<= and ,<= from (6.55), the midsurface dis-
placements can be obtained from (6.54). Subsequently, the mid-surface strains and curvatures at any
location (G, H) can be determined using (3.12) and (3.13), respectively. Once the mid-surface strains and
curvatures have been determined, the through-thickness variation of the strains and stresses can be
evaluated using (3.16).

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness ℎ of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

6.1 Consider the bending of a [0/90]S carbon fiber-reinforced square plate with unidirectional plies.
The length and width of the laminated plate are 0 = 1 = 0.5 m. All four edges of the plate are
simply supported with S1 boundary conditions. The plate is subjected to an off-center point load
of magnitude % = 1 N acting downward at G = 0/4 and H = 1/2 as shown in the figure. Analyze
the bending of the specially orthotropic plate using the Navier solution by truncating the infinite
series to a finite series with summation ranging from 1 to #B.
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(a) Evaluate the deflection F0(0/2, 1/2) at the center of the plate. Tabulate the deflection for
#B = 5, 25 and 50. Comment on the convergence of the deflection as #B is increased.

(b) Plot the converged deflection F0(G, 1/2) vs. G. Determine the maximum deflection Fmax
0 . Does

the maximum deflection occur at the point of application of the load?
(c) Plot the converged deflection F0(0/4, H) vs. H. Is the plot of the deflection in the H-direction

qualitatively similar to the plot of the deflection in the G-direction?
(d) Evaluate the curvatures at the center of the plate and the normal stress fG (0/2, 1/2,−�/2)

on the bottom surface. Tabulate the normal stress fG (0/2, 1/2,−�/2) for #B = 5, 25 and 50.
Comment on the convergence of the normal stress fG as compared to the convergence of the
deflection F0 as #B is increased.

(e) Plot the through-thickness variation of the stress components fG , f1, f2 and the safety factor
( 5 0 at the center of the plate and obtain the minimum safety factor (<8=

5 0
at that location.

6.2 Consider the bending of a [02/902] carbon fiber-reinforced rectangular plate with unidirectional
plies. The length and width of the laminated plate are 0 = 0.6 m and 1 = 0.4 m, respectively. All
four edges of the plate are simply supported with S2 boundary conditions. The plate is subjected
to a uniform distributed load of magnitude @0 = 5 N/m2 acting downward as shown in the figure.
Analyze the bending of the unsymmetric cross-ply laminated plate using the Navier solution.

(a) Plot the deflection F0(G, 1/2) vs. G. Determine the maximum deflection Fmax
0 at the center of

the plate.
(b) Plot the in-plane displacement D0(G, 1/2) vs. G. Determine the in-plane displacement D0(0, 1/2)

at the mid-point of the edge at G = 0.
(c) Evaluate the mid-surface strains and curvatures at the center of the plate.
(d) Plot the through-thickness variation of the stress components fG , f1, f2 and the safety factor

( 5 0 at the center of the plate and obtain the minimum safety factor (<8=
5 0

at that location.



Approximate Solutions for Bending 7
7.1 Principle of minimum total potential energy

Suppose an elastic body occupying the region + with boundary ( is subjected to forces L and surface
traction f on ( 5 as shown in Fig. 7.1. The elastic body is fixed on the boundary (D. Let’s consider
a displacement field u(x) that satisfies the displacement boundary conditions u = 0 on (D. The
corresponding strains and stresses are denoted as 9(x) and 2(x), respectively.

Figure 7.1: Elastic body under applied loads

The total internal strain energy*B due to the deformation is obtained by integrating the strain energy
density* over the volume + ,

*B (u) =
∫
+

*3E =
1
2

∫
+

f8 9Y8 93E (7.1)

When a force L acting on elastic body displaces by an amount u, it loses some potential to do
additional work. Here its potential energy is defined as the negative of the product of the force and
the displacement in the direction of the force. Hence, the potential energy Ω of the external loads is
defined as

Ω(u) = −L · u −
∫
( 5

f · u30 = −�8D8 −
∫
( 5

58D830 (7.2)

Note that the reaction forces on the fixed boundary do not contribute to the potential energy of the
external loads since the displacement u = 0 on (D .

The total potential energy Π of the system, which includes the elastic body and the external loads, is
defined as the sum of the elastic strain energy*B and the potential energy Ω of the external loads,

Π(u) = *B (u) +Ω(u) (7.3)
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where u is an admissible displacement field that satisfies the displacement boundary conditions on
(D .

According to the principle of minimum total potential energy, among all the possible admissible displace-
ment fields, the actual/exact displacement field is that which minimizes the total potential energy of the system.
In other words, the body will deform in a manner that minimizes the total potential energy of the
system. This can be stated as

Π(u0) ≤ Π(u) (7.4)

where u is an arbitrary admissible displacement field and u0 is the actual/exact displacement field
that satisfies elastic equilibrium.

EXAMPLE 7.1: Elastic bar under an axial load

Consider an elastic bar of length ! and cross sectional area � that is subjected to an axial force � as
shown in Fig. 7.2. We are interested in determining the elongation X of the bar using the principle of
minimum total potential energy.

Figure 7.2: Axially loaded bar

Taking inspiration from the potential energy stored in a spring, we define the elastic potential/strain
energy density stored in an axially loaded bar as

* =
1
2
�Y2 (7.5)

where � is a material property that represents the stiffness of the material and Y is the axial strain that
characterizes the intensity of deformation

Y =
X

!
(7.6)

The elastic strain energy density can be expressed in terms of the elongation X by substituting for the
strain Y from (7.6) into (7.5),

* =
1
2
�

!2 X
2 (7.7)
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The total elastic strain energy stored in the bar is obtained by integrating the strain energy density
over the volume

*B =

∫
+

*3E =

∫
+

�

2!2 X
23E =

�X2

2!�2
��! (7.8)

Thus, the total elastic strain energy stored in the bar is

*B =
��

2!
X2 (7.9)

When the force � displaces by a distance X due to the elongation of the bar, it loses some potential to
do additional work. Hence, its potential energy is defined as the negative of the product of the force
and the corresponding displacement, i.e.,

Ω = −�X (7.10)

Thus the total potential energy of the system

Π = *B +Ω (7.11)

can be expressed in terms of the elongation X by substituting (7.9) and (7.10) into (7.11)

Π(X) = ��

2!
X2 − �X (7.12)

The variation of the total potential energy of the system with respect to the elongation X is shown in
Fig. 7.3.

Figure 7.3: Variation of total potential energy Π with elongation X
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According to the principle of minimum total potential energy, at equilibrium

mΠ(X)
mX

=
�2��X
�2!

− � = 0 (7.13)

from which we obtain the actual elongation X as

X =
�!

��
(7.14)

Note, that we obtained the elongation X directly from the strain energy function (7.5) and the principle
of minimum potential energy without using Hooke’s law.

7.2 Total potential energy of a laminated rectangular plate

Consider a laminated rectangular plate that is subjected to arbitrary boundary conditions on its edges
and a distributed load @(G, H) as shown in Fig. 7.4. We are interested in determining the deflection and

Figure 7.4: Laminated plate subjected to a distributed load

stresses in the laminated plate using the principle of minimum total potential energy. To do that, we
need to first evaluate the strain energy stored in the laminated plate due to the deformation and the
potential energy of external loads.

7.2.1 Strain energy of a laminated plate

When a laminated composite plate is subjected to loads, the resulting strain energy can be obtained by
integrating the strain energy density over the volume of the plate,

*B =
1
2

∫
+

(
fGYG + fHYH +��>

0
fI YI +��*

0
gHI WHI +��*

0
gGI WGI + gGHWGH

)
3E

=
1
2

∫
+

(
fGYG + fHYH + gGHWGH

)
3E

(7.15)
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where we have used the plane stress assumption. Recall the stress-strain relations in the global
coordinate system 

fG

fH

gGH

 =

&11 &12 &16

&12 &22 &26

&16 &26 &66



YG

YH

WGH

 (7.16)

where &8 9 are the off-axis stiffnesses. Substituting for the stresses from (7.16) into (7.15), we obtain the
total strain energy of the laminated plate in terms of the strains

*B =
1
2

∫
+

(
&11Y

2
G + 2&12YGYH + 2&16YGWGH + 2&26YHWGH +&22Y

2
H +&66W

2
GH

)
3E (7.17)

Next, we invoke the Kirchhoff hypothesis

YG = Y
0
G + I^G

YH = Y
0
H + I^H

WGH = W
0
GH + I^GH

(7.18)

and substitute for the strains from (7.18) into (7.17) to obtain the total strain energy in terms of the
mid-surface strains and curvatures,

*B =
1
2

∫
+

{
&11

[(
Y0
G

)2
+ 2IY0

G^G + I2^2
G

]
+ 2&12

[
Y0
GY

0
H + IY0

G^H + IY0
H^G + I2^G^H

]
+ 2&16

[
Y0
GW

0
GH + IY0

G^GH + IW0
GH^G + I2^G^GH

]
+ 2&26

[
Y0
HW

0
GH + IY0

H^GH + IW0
GH^H + I2^H^GH

]
+ &22

[(
Y0
H

)2
+ 2IY0

H^H + I2^2
H

]
+&66

[(
W0
GH

)2
+ 2IW0

GH^GH + I2^2
GH

]}
3E

(7.19)

The volume integral in (7.19) is performed by first integrating through the thickness of the lami-
nate. This gives the total strain energy in terms of the laminate rigidities, mid-surface strains and
curvatures

*B =
1
2

∫
�

{
�11

(
Y0
G

)2
+ 2�12Y

0
GY

0
H + �22

(
Y0
H

)2
+ 2

(
�16Y

0
G + �26Y

0
H

)
W0
GH + �66

(
W0
GH

)2
+ 2�11Y

0
G^G

+ 2�12

(
Y0
G^H + Y0

H^G

)
+ 2�16

(
Y0
G^GH + W0

GH^G

)
+ 2�26

(
Y0
H^GH + W0

GH^H

)
+ 2�22Y

0
H^H

+ 2�66W
0
GH^GH + �11^

2
G + 2�12^G^H + 2

(
�16^G + �26^H

)
^GH + �22^

2
H + �66^

2
GH

}
30

(7.20)

This is the most general expression for the total strain energy in a laminated plate due deformation.

In the case of symmetric laminates in pure bending, the mid-surface strains Y0
G = Y

0
H = W

0
GH = 0 since the
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laminate rigidities �8 9 = 0. In this case, the total strain energy in (7.20) reduces to

*B =
1
2

∫
�

{
�11^

2
G + 2�12^G^H + �22^

2
H + 2

(
�16^G + �26^H

)
^GH + �66^

2
GH

}
30

=
1
2

∫ 0

0

∫ 1

0

[
�11

(
m2F0

mG2

)2

+ 2�12
m2F0

mG2
m2F0

mH2 + �22

(
m2F0

mH2

)2

+ 4
(
�16

m2F0

mG2 + �26
m2F0

mH2

)
m2F0

mGmH
+ 4�66

(
m2F0

mGmH

)2
]
3G3H

(7.21)

7.2.2 Potential energy of external loads

When a laminated plate is subjected to a distributed load, the distributed load @ displaces an area
element 30 by an amount F0 in the I-direction. Thus the distributed load loses some potential to do
additional work on the laminated plate. Therefore, the potential energy of the distributed load is
defined as

Ω = −
∫
�

@F030 = −
∫ 0

0

∫ 1

0
@(G, H)F0(G, H)3G3H (7.22)

7.3 Approximate solution using the Ritz method

The Ritz method is a convenient technique for obtaining approximate solutions to boundary value
problems. In the Ritz method, the solution is sought in the form

D0 (G, H) =
"1∑
<=1

#1∑
==1

*<=D<= (G, H)

E0 (G, H) =
"2∑
<=1

#2∑
==1

+<=E<= (G, H)

F0 (G, H) =
"3∑
<=1

#3∑
==1

,<=F<= (G, H)

(7.23)

where*<=,+<= and,<= are undetermined coefficients. The functions D<= (G, H), E<= (G, H) and F<= (G, H)
are chosen to qualitatively resemble the anticipated deformation of the plate. The essential geometric
boundary conditions involving the displacements or slopes must be satisfied by the chosen functions.
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When the midsurface strains and curvatures corresponding to the chosen displacements (7.23) are
substituted into (7.20), the resulting total potential energy Π is a function of*<=, +<= and,<=, i.e.,

Π = Π (*<=,+<=,,<=) (7.24)

The principle of minimum total potential energy states that,

Π (*<=,+<=,,<=) = stationary value (7.25)

This condition yields the following system of equations,

mΠ

m*<=
= 0 where < = 1, 2, . . . "1 ; = = 1, 2, . . . #1

mΠ

m+<=
= 0 where < = 1, 2, . . . "2 ; = = 1, 2, . . . #2

mΠ

m,<=
= 0 where < = 1, 2, . . . "3 ; = = 1, 2, . . . #3

(7.26)

In the formulation presented here, the total potential energy of the system Π is always a quadratic
function of the undetermined coefficients. Thus the conditions above, in (7.26), are a

∑3
8=1 "8 × #8 set

of linear simultaneous equations for the unknown coefficients*<=, +<= and,<=. Upon solving the
simultaneous equations for the unknown coefficients, we can evaluate the mid-surface displacements
using (7.23). Subsequently, we can determine the mid-surface strains, curvatures, and the strains and
stresses at any location within the laminated plate.

7.4 Bending of specially orthotropic rectangular plates

Consider a specially orthotropic laminated rectangular plate that is supported by arbitrary boundary
conditions on its four edges as shown in Fig. 7.5. The plate is subjected to a uniform distributed load of

Figure 7.5: Laminated plate subjected to a uniform distributed load

magnitude @0 acting downward, i.e.,
@ (G, H) = −@0 (7.27)
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Recall that the following laminate rigidities are zero for a specially orthotropic laminate

�16 = �26 = 0, [�] = [0] , �16 = �26 = 0 (7.28)

Since the bending-extension coupling rigidities �8 9 are zero, bending of the laminate will not induce
in-plane mid-surface strains and displacements. Therefore, it follows that

D0 = E0 = 0, F0 = F0 (G, H) (7.29)

We use the Ritz solution to obtain an approximate solution for the laminated plate. The total strain
energy, obtained by setting �16 = �26 = 0 in (7.21), is

*B =
1
2

∫ 0

0

∫ 1

0

[
�11

(
m2F0

mG2

)2

+ 2�12
m2F0

mG2
m2F0

mH2 + �22

(
m2F0

mH2

)2

+ 4�66

(
m2F0

mGmH

)2
]
3G3H (7.30)

The potential energy of the external loads is given by

Ω = −
∫ 0

0

∫ 1

0
@ (G, H) F0 (G, H) 3G3H = @0

∫ 0

0

∫ 1

0
F0 (G, H) 3G3H (7.31)

The total potential energy of the system follows from (7.30) and (7.31) as

Π = *B +Ω

=
1
2

∫ 0

0

∫ 1

0

[
�11

(
m2F0

mG2

)2

+ 2�12
m2F0

mG2
m2F0

mH2 + �22

(
m2F0

mH2

)2

+ 4�66

(
m2F0

mGmH

)2

+ 2@0F0

]
3G3H

(7.32)

In order to find an approximate solution for the plate deflection, we consider the following finite series
in variable separable form,

F0 (G, H) =
"∑
<=1

#∑
==1

,<=-< (G).= (H) (7.33)

where -< (G) and .= (H) are functions that are chosen to satisfy the essential boundary conditions and
,<= are unknown coefficients. By the principle of minimum total potential energy,

mΠ

m,<=
= 0, < = 1, 2, . . . " ; = = 1, 2, . . . # (7.34)

The relations in (7.34) give " × # equations for the " × # unknowns,<=.
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Differentiating (7.33) for the curvatures we obtain:

m2F0

mG2 =

"∑
<=1

#∑
==1

,<=-
′′
<.=

m2F0

mH2 =

"∑
<=1

#∑
==1

,<=-<.
′′
=

(7.35)

Now differentiating (7.32) summand by summand:

m

m,<=

[
1
2
�11

(
m2F0

mG2

)2
]
= �11

(
m2F0

mG2

)
m

m,<=

(
m2F0

mG2

)
= �11

(
m2F0

mG2

)
m

m,<=


"∑
8=1

#∑
9=1

,8 9-
′′
8 . 9


= �11

©­«
"∑
8=1

#∑
9=1

,8 9-
′′
8 . 9

ª®¬ - ′′<.=
=

"∑
8=1

#∑
9=1

[
�11

(
- ′′8 -

′′
<

) (
. 9.=

)
,8 9

]
(7.36a)

Similarly,

m

m,<=

[
1
2
· 2�12

m2F0

mG2
m2F0

mH2

]
= �12

[
m

m,<=

(
m2F0

mG2

)
m2F0

mH2 +
m2F0

mG2
m

m,<=

(
m2F0

mH2

)]
= �12

- ′′<.=
"∑
8=1

#∑
9=1

,8 9-8.
′′
9 + -<. ′′=

"∑
8=1

#∑
9=1

,8 9-
′′
8 . 9


=

"∑
8=1

#∑
9=1

�12

[ (
- ′′<-8

) (
.=.

′′
9

)
+

(
- ′′8 -<

) (
. 9.

′′
=

) ]
,8 9

(7.36b)

m

m,<=

[
1
2
�22

(
m2F0

mH2

)2
]
=

"∑
8=1

#∑
9=1

�22 (-8-<)
(
. ′′9 .

′′
=

)
,8 9 (7.36c)

m

m,<=

[
1
2
· 4�66

(
m2F0

mGmH

)2
]
= 4

"∑
8=1

#∑
9=1

�66
(
- ′8 -

′
<

) (
. ′9.

′
=

)
,8 9 (7.36d)

m

m,<=

[
1
2
(2@0F0)

]
= @0

m

m,<=


"∑
8=1

#∑
9=1

,8 9-8. 9

 = @0-<.= (7.36e)
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Substitution of (7.36) and (7.32) into the principle of minimum total potential energy (7.34) gives

"∑
8=1

#∑
9=1

{
�11

(∫ 0

0
- ′′8 -

′′
<3G

) (∫ 1

0
. 9.=3H

)
+ �22

(∫ 0

0
-8-<3G

) (∫ 1

0
. ′′9 .

′′
= 3H

)
+

�12

[(∫ 0

0
- ′′<-83G

) (∫ 1

0
.=.

′′
9 3H

)
+

(∫ 0

0
- ′′8 -<3G

) (∫ 1

0
. 9.

′′
= 3H

)]
+

4�66

(∫ 0

0
- ′8 -

′
<3G

) (∫ 1

0
. ′9.

′
=3H

)}
,8 9 = −@0

(∫ 0

0
-<3G

) (∫ 1

0
.=3H

) (7.37)

for < = 1, 2, . . . " and = = 1, 2, . . . # . This yields a linear system of equations for the unknown
coefficients,8 9 where 8 = 1, . . . " and 9 = 1, . . . # .

EXAMPLE 7.2: Bending of a specially orthotropic clamped rectangular plate

Consider a specially orthotropic rectangular plate of length 0 and width 1 that is clamped on all four
edges and subjected to a uniform distributed load of magnitude @0 as shown in Fig. 7.38. We use the
Ritz method to obtain an approximate solution for the deflection.

Figure 7.6: Clamped rectangular plate subjected to a uniform distributed load

The boundary conditions for the clamped edges of the plate are

F0 =
mF0

mG
= 0 at G = 0, 0

F0 =
mF0

mH
= 0 at H = 0, 1

(7.38)

We choose a one term solution for F0 in variable separable form

F0 (G, H) = ,11-1 (G).1 (H) (7.39)

where the functions -1 (G) and .1 (H) need to satisfy the essential boundary conditions at the four
edges. In the case of a clamped rectangular plate, the chosen functions should satisfy the displacement
and slope boundary conditions at the clamped edges. For example, we can choose a one term solution
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of the form,

-1 (G) =
( G
0

)2 (
1 − G

0

)2

.1 (H) =
( H
1

)2 (
1 − H

1

)2 (7.40)

which satisfies the boundary conditions (7.38) at G = 0, 0 and H = 0, 1.

In the case of a one-term solution, (7.37) reduces to{
�11

(∫ 0

0
- ′′1 -

′′
1 3G

) (∫ 1

0
.1.13H

)
+ �22

(∫ 0

0
-1-13G

) (∫ 1

0
. ′′1 .

′′
1 3H

)
+

�12

[(∫ 0

0
- ′′1 -13G

) (∫ 1

0
.1.

′′
1 3H

)
+

(∫ 0

0
- ′′1 -13G

) (∫ 1

0
.1.

′′
1 3H

)]
+

4�66

(∫ 0

0
- ′1-

′
13G

) (∫ 1

0
. ′1.

′
13H

)}
,11 = −@0

(∫ 0

0
-13G

) (∫ 1

0
.13H

) (7.41)

Given the solution form (7.40), the integrals involving -1(G) in (7.41) can be evaluated analytical to
obtain∫ 0

0
-1 (G) 3G =

0

30
,

∫ 0

0
-1 (G) -1 (G) 3G =

0

630
,

∫ 0

0
- ′1 (G) -

′
1 (G) 3G =

2
1050∫ 0

0
-1 (G) - ′′1 (G) 3G = −

2
1050

,
∫ 0

0
- ′′1 (G) -

′′
1 (G) 3G =

4
503

(7.42)

Similarly, integrals involving .1(H) in (7.41) are evaluated analytical to obtain∫ 1

0
.1 (H) 3H =

1

30
,

∫ 1

0
.1 (H).1 (H) 3H =

1

630
,

∫ 1

0
. ′1 (H).

′
1 (H) 3H =

2
1051∫ 1

0
.1 (H). ′′1 (H) 3H = −

2
1051

,
∫ 1

0
. ′′1 (H).

′′
1 (H) 3H =

4
513

(7.43)

Substituting of the integrals from (7.42) and (7.43) into (7.41) gives,{
�11

(
4

503

) (
1

630

)
+ �12

[(
−2

1050

) (
−2

1051

)
+

(
−2

1050

) (
−2

1051

)]
+

�22

( 0

630

) (
4

513

)
+ 4�66

(
2

1050

) (
2

1051

)}
,11 = −@0

( 0
30

) (
1

30

) (7.44)

Next, we multiply all the terms in (7.44) by 1052/201 to obtain an equation for,11[
7
04
�11 +

4
0212 (�12 + 2�66) +

7
14
�22

]
,11 = −

49
8
@0 (7.45)
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Solving for,11, we obtain

,11 = −
49
8
· @0

7
04�11 + 4

0212 (�12 + 2�66) + 7
14�22

(7.46)

Substituting for,11 from (7.46) and -1(G) and .1(H) from (7.40) into (7.39) gives the following form
for the mid-surface displacement F0 (G, H),

F0 (G, H) = −49
8
·
@0

[ (
G
0

) (
1 − G

0

) ]2 [ ( H
1

) (
1 − H

1

) ]2

7
04�11 + 4

0212 (�12 + 2�66) + 7
14�22

(7.47)

The numerator and denominator of (7.47) can be multiplied by 04 and expressed in the alternate form

F0 (G, H) = −49
8
·
@00

4 [ (
G
0

) (
1 − G

0

) ]2 [ ( H
1

) (
1 − H

1

) ]2

7�11 + 4 (�12 + 2�66) B2 + 7�22B4
(7.48)

where B = 0/1 is the aspect ratio of the plate.

The maximum deflection, which occurs at the center where G = 0/2 and H = 1/2, can be determined
from (7.48),

F<0G0 = −0.003418 · @00
4

�11 + 0.5714 (�12 + 2�66) B2 + �22B4
(7.49)

In the case of a square isotropic plate (B = 0/1 = 1 , �11 = �22 = �12 + 2�66 = �), the maximum
deflection from (7.49) based on a one-term Ritz solution is,

F<0G0 = −0.00133 · @00
4

�
(7.50)

The "exact" solution for an isotropic plate obtained using a large number of terms in the series [5] is,

F<0G0 = −0.00126 · @00
4

�
(7.51)

Thus, the error in the one-term polynomial for a square isotropic plate is 5.6%. It is possible to reduce
the error by introducing more terms in the Ritz solution for the deflection F0 (G, H).

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
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that the ply thickness ℎ of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

7.1 Consider the bending of a [0/90]( carbon fiber-reinforced rectangular plate with unidirectional
plies. The length and width of the laminated plate are 0 = 0.6 m and 1 = 0.4 m, respectively. All four
edges of the plate are clamped. The plate is subjected to a uniform distributed load of magnitude
@0 = 10 N/m2 acting downward.

Analyze the bending of the laminated plate using the one-term Ritz solution for F0(G, H).

(a) Determine the maximum deflection Fmax
0 at the center of the plate

(b) Plot the deflection F0(G, 1/2) vs. G
(c) Evaluate the curvatures ^G , ^H and ^GH at a point with coordinates (0/4, 1/4)
(d) Plot the through-thickness variation of the stress components fG , f1, f2 and the safety factor

( 5 0 at the point with coordinates (0/4, 1/4) and obtain the minimum safety factor (<8=
5 0

at that
location.

7.2 Consider the bending of a [0/90]( carbon fiber-reinforced square plate with unidirectional plies.
The length and width of the laminated plate are 0 = 1 = 0.5 m. The edges G = 0 and 0 are simply
supported with (1 boundary conditions. The other two edges, namely H = 0 and 1, are clamped.
The plate is subjected to a uniform distributed load of magnitude @0 = 10 N/m2 acting downward.

Analyze the bending of the laminated plate using a one-term Ritz solution of the form

F0(G, H) = ,11

( G
0

) (
1 − G

0

) ( H
1

)2 (
1 − H

1

)2

(a) Determine the maximum deflection Fmax
0 at the center of the plate
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(b) Plot the deflection F0(G, 1/2) vs. G
(c) Plot the deflection F0(0/2, H) vs. H
(d) Evaluate the curvatures ^G , ^H and ^GH at the center of the plate. Do the relative magnitudes

of the curvatures make sense?
(e) Plot the through-thickness variation of the stress components fG , f1, f2 and the safety factor

( 5 0 at the center of the plate and obtain the minimum safety factor (<8=
5 0

at that location.



Vibration of Laminated Plates 8
In this chapter, we will discuss the vibration of laminated composite plates.

8.1 Vibration of laminated plates

Let’s consider laminated composite plates of uniform density wherein all laminae have the same
density d. In that case, the areal mass �0 and rotary inertia �2 of the laminated plate are

�0 = d�, �2 =
d�3

12
(8.1)

where � is the thickness of the laminate. As previously demonstrated in Sec. 4.2.2, the density integral
�1 = 0. The equations of motion (4.6), (4.15) and (4.27) reduce to

m#G

mG
+
m#GH

mH
= �0

m2D0

mC2
(8.2a)

m#GH

mG
+
m#H

mH
= �0

m2E0

mC2
(8.2b)

m2"G

mG2 + 2
m2"GH

mGmH
+
m2"H

mH2 + @ (G, H, C) = �0
m2F0

mC2
− �2

m2

mC2

(
m2F0

mG2 +
m2F0

mH2

)
(8.2c)

where @(G, H, C) is a distributed load.

8.1.1 Forced vibration

In the case of forced vibration, the distributed load is a function of time,

@ = @ (G, H, C) (8.3)

For example, in the case of harmonic excitation,

@ = @ (G, H) sin
(
l 5 C

)
(8.4)

where l 5 is the angular frequency of the applied force (forcing frequency).
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8.1.2 Free vibration

In the case of free vibration, the plate is set into motion by initial conditions. The are no applied loads
acting on the plate, i.e., @ (G, H, C) = 0. The displacements can be written in the form


D0

E0

F0

 =

*0 (G, H)
+0 (G, H)
,0 (G, H)

 sin (lC + q) (8.5)

where l is a natural frequency that is a characteristic property of the system and is independent of the
initial deflection or velocity of the plate. Alternatively, the harmonic variation of the displacements can
be represented as follows 

D0

E0

F0

 =

*0 (G, H)
+0 (G, H)
,0 (G, H)

 4
8lC (8.6)

8.1.3 Cylindrical bending vibration

In the case of cylindrical bending, m( ·)
mH

= 0 and the equations of motion (8.2) reduce to

m#G

mG
= �0

m2D0

mC2
(8.7a)

m#GH

mG
= �0

m2E0

mC2
(8.7b)

m2"G

mG2 + @ (G, C) = �0
m2F0

mC2
− �2

m2

mC2

(
m2F0

mG2

)
(8.7c)

In the case of free vibration, the distributed load @ (G, C) = 0. The displacements exhibit a harmonic
variation in time which can be expressed as follows,


D0

E0

F0

 =

*0 (G)
+0 (G)
,0 (G)

 4
8lC (8.8)

where l is a natural frequency.
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8.2 Free vibration of simply supported laminates in cylindrical bending

In this section, we consider the free vibration of a simply supported cross-ply laminate of width 0 that
is subjected to S2 boundary conditions at G = 0 and G = 0 as shown in Fig. 8.1.

Figure 8.1: Free vibration of a simply supported cross-ply laminate in cylindrical bending

In the case of a cross-ply laminate, the rigidities

�16 = �26 = 0, �16 = �26 = 0, �16 = �26 = 0 (8.9)

The distributed load @ (G, C) = 0 since we are interested in the natural frequencies and mode shapes for
a laminated plate in free vibration.

8.2.1 Displacements, mid-surface strains and curvatures

We assume the following form of the displacements,

D0 (G, H, C) = *< cos
(<cG
0

)
48lC

E0 (G, H, C) = 0

F0 (G, H, C) = ,< sin
(<cG
0

)
48lC

(8.10)

where l is the frequency and < specifies the mode of vibration.

The midsurface strains, obtained using (3.12) and (8.10), are

Y0
G =

mD0

mG
= −*<

(<c
0

)
sin

(<cG
0

)
48lC

Y0
H =

mE0

mH
= 0

W0
GH =

mD0

mH
+ mE0

mG
= 0

(8.11)
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The midsurface curvatures, obtained using (3.13) and (8.10), are

^G = −
m2F0

mG2 = ,<

(<c
0

)2
sin

(<cG
0

)
48lC

^H = −
m2F0

mH2 = 0

^GH = −2
m2F0

mGmH
= 0

(8.12)

8.2.2 Force and moment resultants

The force resultant #G and moment resultant "G are obtained using the laminate rigidities and the
mid-surface strains and curvatures,

#G = �11Y
0
G + �11^G =

(<c
0

) [
−�11*< + �11,<

(<c
0

)]
sin

(<cG
0

)
48lC (8.13a)

"G = �11Y
0
G + �11^G =

(<c
0

) [
−�11*< + �11,<

(<c
0

)]
sin

(<cG
0

)
48lC (8.13b)

It is noted that the force resultant #GH = �16Y
0
G + �16^G = 0.

8.2.3 Equations of motion

Substituting for #G from (8.13a) and D0 from (8.10) into the equation of motion (8.7a)

m#G

mG
= �0

m2D0

mC2
(8.14)

gives (<c
0

)2 [
−�11*< + �11,<

(<c
0

)]
cos

(<cG
0

)
48lC = −�0l2*< cos

(<cG
0

)
48lC (8.15)

Since (8.15) must hold for all G and C, we obtain

−�11

(<c
0

)2
*< + �11

(<c
0

)3
,< = −�0l2*< (8.16)

which can in turn be expressed as[
�11

(<c
0

)2
− �0l2

]
*< − �11

(<c
0

)3
,< = 0 (8.17)

The equation of motion (8.7b) is identically satisfied since #GH and E0 are identically zero.
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Substitution of "G from (8.13b) and F0 from (8.10) into the equation of motion (8.7c)

m2"G

mG2 +��
��:0

@ (G, C) = �0
m2F0

mC2
− �2

m2

mC2

(
m2F0

mG2

)
(8.18)

yields

−
(<c
0

)3 [
−�11*< + �11,<

(<c
0

)]
sin

(<cG
0

)
48lC =

− �0l2,< sin
(<cG
0

)
48lC − �2l2

(<c
0

)2
,< sin

(<cG
0

)
48lC

(8.19)

Since (8.19) must hold for all G and C, we obtain

�11

(<c
0

)3
*< − �11

(<c
0

)4
,< = −�0l2,< − �2l2

(<c
0

)2
,< (8.20)

which can be expressed as

−�11

(<c
0

)3
*< +

{
�11

(<c
0

)4
−

[
�0 + �2

(<c
0

)2
]
l2

}
,< = 0 (8.21)

8.2.4 Natural frequencies

Equations (8.17) and (8.21) can be written in matrix form as[
�11

(
<c
0

)2 − �0l2 −�11
(
<c
0

)3

−�11
(
<c
0

)3
�11

(
<c
0

)4 −
[
�0 + �2

(
<c
0

)2
]
l2

]
·
{
*<

,<

}
=

{
0
0

}
(8.22)

For a non-tirivial solution, the determinant of the matrix in (8.22) must vanish. Therefore,

�11�11

(<c
0

)6
− �11

[
�0 + �2

(<c
0

)2
] (<c

0

)2
l2 − �11�0

(<c
0

)4
l2+

�0

[
�0 + �2

(<c
0

)2
]
l4 − �2

11

(<c
0

)6
= 0

(8.23)

Equation (8.23) can be re-written as
Ul4 − Vl2 + W = 0 (8.24)

where the coefficients U, V and W are defined as

U = �0

[
�0 + �2

(<c
0

)2
]

V = �11

[
�0 + �2

(<c
0

)2
] (<c

0

)2
+ �11�0

(<c
0

)4

W = �11�11

(<c
0

)6
− �2

11

(<c
0

)6

(8.25)
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The roots of (8.24) yield the natural frequency l< corresponding to mode <

l< =

[
V ±

√
V2 − 4UW
2U

] 1
2

(8.26)

Equation (8.26) yields two positive roots, namely l (1)< and l
(2)
< , for each <. Note that the resulting

natural frequencies l (8)< have units of rad/sec.

8.2.5 Mode shapes

The mode shape corresponding to one of the roots, say l (8)< (8 = 1 or 2), is obtained by setting l = l (8)<
in (8.22) and striking out one of the redundant equations since the determinant is zero,

�11
(
<c
0

)2 − �0
(
l
(8)
<

)2
−�11

(
<c
0

)3

− �11
(
<c
0

)3
�11

(
<c
0

)4 −
[
�0 + �2

(
<c
0

)2
] (
l
(8)
<

)2

 ·
{
*<

,<

}
=

{
0
0

}
(8.27)

It follows from (8.27) that [
�11

(<c
0

)2
− �0

(
l
(8)
<

)2
]
*< = �11

(<c
0

)3
,< (8.28)

and therefore

*<

,<
=

�11
(
<c
0

)3

�11
(
<c
0

)2 − �0
(
l
(8)
<

)2 (8.29)

Equation (8.29) gives the ratio of the amplitude of D0 to the amplitude of F0. The mode shapes for the
deflection F0(G) and in-plane displacement D0(G) are shown in Fig. 8.2 for < = 1.

Figure 8.2: Mode shape corresponding to < = 1 for a simply supported laminate in cylindrical bending
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The mode shapes for < = 2 are shown in Fig. 8.3.

Figure 8.3: Mode shape corresponding to < = 2 for a simply supported laminate in cylindrical bending

8.2.6 Symmetric cross-ply laminates

In the case of a symmetric cross-ply laminate, �11 = 0. Therefore, (8.21) and (8.17) reduce to[
�11

(<c
0

)4
−

[
�0 + �2

(<c
0

)2
]
l2

]
,< = 0 (8.30a)

[
�11

(<c
0

)2
− �0l2

]
*< = 0 (8.30b)

As is evident from Eqn. (8.30), the amplitude of the out-of-plane deflection,< is uncoupled from the
amplitude of the in-plane displacement*<.

Equation (8.30a) gives the natural frequency of bending vibration l (1)< ,

l
(1)
< =

(<c
0

)2
√

�11

�0 + �2
(
<c
0

)2

=

(<c
0

)2
√
�11

�0

√√
1

1 + �2
�0

(
<c
0

)2

(8.31)

Since �2 = d�3/12 and �0 = d�, the ratio of the rotary inertia to the areal density is

�2

�0
=
�2

12
(8.32)

It follows from (8.32) and (8.31) that the natural frequency of bending vibration

l
(1)
< =

(<c
0

)2
√
�11

�0

√
1

1 + 1
12

(
�
0

)2 (<c)2
(8.33)
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The normalized fundamental frequencyl (1)< is shown in Fig. 8.4 as a function of the length-to-thickness

Figure 8.4: Effect of rotary inertia on the fundamental frequency of a laminated plate in cylindrical
bending

ratio 0/�. As can be seen, the fundamental frequency decreases as the thickness � increases due to
the rotary inertia. The effect of rotary inertia on the natural frequency is pronounced for moderately
thick or thick plates. In the case of thin plates, the rotary inertia can be neglected and the fundamental
frequency can be approximated as

l
(1)
< ≈

(<c
0

)2
√
�11

�0
(8.34)

The natural frequency of in-plane vibration, denoted by l (2)< , is obtained from Equation (8.30b)

l
(2)
< =

(<c
0

) √
�11

�0
(8.35)

8.3 Free vibration of simply supported cross-ply laminated plates

In this section, we consider the free vibration of a cross-ply laminated rectangular plate that is subjected
to S2 boundary conditions on all four edges as shown in Fig. 8.5. The distributed load @ (G, H, C) = 0
since we are interested in the natural frequencies of a laminated rectangular plate in free vibration.
In the case of a cross-ply laminate,

�16 = �26 = 0, �16 = �26 = 0, �16 = �26 = 0
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Figure 8.5: Vibration of a simply supported laminated rectangular plate

8.3.1 Displacements, mid-surface strains and curvatures

We assume a Navier solution for the mid-surface displacements of the form

D0 (G, H, C) = *<= cos
(<cG
0

)
sin

(=cH
1

)
48lC

E0 (G, H, C) = +<= sin
(<cG
0

)
cos

(=cH
1

)
48lC

F0 (G, H, C) = ,<= sin
(<cG
0

)
sin

(=cH
1

)
48lC

(8.36)

The midsurface strains and curvatures corresponding to the assumed displacements (8.36) are

Y0
G =

mD0

mG
= *<=

(
−<c
0

)
sin

<cG

0
sin

=cH

1
48lC

Y0
H =

mE0
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(
−=c
1

)
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<cG

0
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=cH

1
48lC
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mH
+ mE0

mG
=
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(=c
1

)
++<=

(<c
0

)]
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<cG

0
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=cH

1
48lC

^G = −
m2F0
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0

)2
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<cG

0
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=cH

1
48lC

^H = −
m2F0

mH2 = ,<=

(=c
1

)2
sin

<cG

0
sin

=cH

1
48lC

^GH = −2
m2F0

mGmH
= −2,<=

(
<=c2

01

)
cos

<cG

0
cos

=cH

1
48lC

(8.37)
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8.3.2 Force and moment resultants

The force and moment resultants are obtained by substituting for the mid-surface strains and curvatures
from (8.37) into (3.26)

#G = �11Y
0
G + �12Y

0
H + �11^G + �12^H

=

[
−�11

(<c
0

)
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)
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]
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0
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1
48lC (8.38a)

#H = �12Y
0
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0
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"H = �12Y
0
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0
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=
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"GH = �66W
0
GH + �66^GH
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8.3.3 Equations of motion

The equations of motions for a laminated plate are,

m#G

mG
+
m#GH

mH
= �0

m2D0

mC2
(8.39a)

m#GH

mG
+
m#H

mH
= �0

m2E0

mC2
(8.39b)

m2"G

mG2 + 2
m2"GH

mGmH
+
m2"H

mH2 +���
��:0

@ (G, H, C) = �0
m2F0

mC2
− �2

m2

mC2

(
m2F0

mG2 +
m2F0

mH2

)
(8.39c)
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The time derivatives of the mid-surface displacements and curvatures on the right hand side of
equations of motion (8.36) are

�0
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)
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(=c
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(<cG
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)
sin

(=cH
1

)
48lC

(8.40)

Substituting the force and moment resultants (8.38), and time derivatives of the mid-surface displace-
ments and curvatures (8.40), into the equations of motion (8.39) and requiring that the equations hold
for all G, H and C, yields the following system of equations

 11*<= +  12+<= +  13,<= = "11l
2*<=

 12*<= +  22+<= +  23,<= = "22l
2+<=

 13*<= +  23+<= +  33,<= = "33l
2,<=

(8.41)

where the stiffness constants  8 9 were previously defined in equations (6.41), (6.45) and (6.49) and the
mass constants "11, "22 and "33 are defined as follows

"11 = �0, "22 = �0, "33 = �0 + �2
[(<c

0

)2
+

(=c
1

)2
]

(8.42)

Equations (8.41) can be written in matrix form as


 11  12  13

 12  22  23

 13  23  33

 ·

*<=

+<=

,<=

 = l
2


"11 0 0

0 "22 0
0 0 "33

 ·

*<=

+<=

,<=

 (8.43)

8.3.4 Natural frequencies

Equation (8.43) is an eigenvalue problem for the natural frequencies l for each < and =. It can be
written in compact form as follows

[ ] · {3} = _["]{3} (8.44)
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where,

[ ] =

 11  12  13

 12  22  23

 13  23  33

 , ["] =

"11 0 0

0 "22 0
0 0 "33

 , _ = l2, {3} =


*<=

+<=

,<=

 (8.45)

Equation (8.44) is a generalized eigenvalue problem which can be solved numerically to obtain the
eigenvalues _ and hence the natural frequency l =

√
_ for each combination of < and =. In general,

the eigenvalue problem will yield three eigenvalues, namely _ (1)<= , _ (2)<= and _ (3)<=. The corresponding
natural frequencies are

l
(8)
<= =

√
_
(8)
<= (8.46)

The bending natural frequency l<= is typically the smallest of the three natural frequencies l (8)<=, i.e.,

l<= = min
{
l
(1)
<=,l (2)<=,l (3)<=

}
(8.47)

MATLAB code snippet

Use the following commands to calculate the eigenvalues and eigenvectors of the generalized
eigenvalue problem (8.44) numerically.

» [d,lambda] = eig(K,M)
» omega = sqrt(lambda)
» omega_mn = min(diag(omega))

This will yield a 3 × 3 diagonal matrix lambda of eigenvalues and a 3 × 3 matrix d of eigenvectors.
The diagonal values of the 3× 3 matrix omega give three natural frequencies l (1)<=, l (2)<= and l (3)<=. The
8th column of the matrix d are the amplitudes [* (8)<=,+ (8)<=,, (8)<=]) .

We can tabulate the bending natural frequency l<= values for the various mode shapes corresponding
to <, = to find the fundamental frequency,

<

=
1 2 3 . . .

1 l11 l12 l13 . . .

2 l21 l22 l23 . . .

3 l31 l32 l33 . . .

...

Table 8.1: Tabulated l<= to find the fundamental frequency
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The fundamental frequency l0

l0 = min
<,=

l<= (8.48)

In general, l11 need not be the fundamental frequency since the smallest natural frequency might
occur for values other than < = = = 1 depending on the laminate dimensions and stacking sequence.

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness ℎ of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

8.1 Consider the free vibration in cylindrical bending of a simply supported [02/902] laminate made
of unidirectional carbon fiber-reinforced plies. The laminate is of width 0 = 0.5 m and the edges
G = 0 and G = 0 are simply supported with S2 boundary conditions.

Assume a solution for the mid-surface displacements of the form in (8.10).

(a) Determine the natural frequenciesl (1)< andl (2)< and the ratio*</,< for the mode of vibration
corresponding to < = 1. Plot the corresponding normalized mode shapes D0(G)/F0(0/2) and
F0(G)/F0(0/2) as a function of G for each natural frequency. Discuss the significance of the
two modes of vibration and what they represent.

(b) Determine the natural frequencies l (1)< and l (2)< and the ratio*</,< for the mode of vibra-
tion corresponding to < = 2. Plot the corresponding normalized mode shapes D0(G)/F0(0/4)
and F0(G)/F0(0/4) as a function of G for each natural frequency. Do the magnitudes of the
natural frequencies for < = 2 make sense relative to the natural frequencies for < = 1?

8.2 Consider the free vibration of a [04/904] cross-ply laminated rectangular plate made of unidirec-
tional carbon fiber-reinforced plies. The length and width of the laminated plate are 0 = 0.3 m and
1 = 0.5 m. All four edges of the plate are simply supported with S2 boundary conditions.

Using a Navier solution for the mid-surface displacements of the form (8.36),
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(a) Calculate the three natural frequencies l (8)<= and the relative amplitudes * (8)<=/, (8)<= and
+
(8)
<=/, (8)<= corresponding to < = 1 and = = 1. Discuss the significance of the three modes

of vibration and what they represent. Determine the smallest of the three natural frequencies,
i.e., l11 = min

8
l
(8)
11 , and discuss the mode of vibration that it corresponds to.

(b) Evaluate the natural frequencies l12, l21 and l22 and determine the fundamental frequency
l0 of the laminated rectangular plate. What mode of vibration does l0 correspond to?
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First Order Shear Deformation Theory 9
When analyzing moderately thick to thick laminated plates and sandwich composites, we need to take
into account the affects of transverse shear deformation. In this chapter, we will derive the governing
equations for the first-order shear deformation theory.

9.1 Kinematics

The first order shear deformation theory is based on the assumption that plane sections, originally per-
pendicular to the midsurface, remain plane but they need not remain perpendicular to the midsurface
after deformation as shown in Fig. 9.1.

Figure 9.1: Rotation of normal due to shear deformation

The assumed displacement field for the first order shear deformation theory is of the form,

D (G, H, I, C) = D0 (G, H, C) + IqG (G, H, C)

E (G, H, I, C) = E0 (G, H, C) + IqH (G, H, C)

F (G, H, I, C) = F0 (G, H, C)

(9.1)

where D0, E0 and F0 are the mid-surface displacements. When we take the partial derivatives of the
in-plane displacements D and E with respect to I we obtain

mD

mI
= qG ,

mE

mI
= qH (9.2)

which indicates that qG and qH are the rotations of a transverse normal in the G − I and H − I planes,
respectively, as shown in Fig. 9.2. Note that in general, that the rotation of a normal need not equal the
slope of the mid-surface, i.e.,

qG ≠ −
mF0

mG
, qH ≠ −

mF0

mH
(9.3)
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Figure 9.2: Kinematics of the first order shear deformation theory

In other words, the normal need to be perpendicular to the mid-surface after deformation. The
reduction in angle between the normal and the midsurface in the G − I plane is the transverse shear
strain WGI , i.e.

WGI = qG +
mF0

mG
(9.4)

In general, the transverse shear strains WGI and WHI need not be zero in the first order shear deformation
theory.

9.1.1 Strains

Given the assumed displacement field in equation (9.1), the strains can be calculated using equation
(1.10) as,

YG =
mD

mG
=
mD0

mG
+ I mqG

mG

YH =
mE

mH
=
mE0

mH
+ I
mqH

mH

WGH =
mD

mH
+mE
mG

=
mD0

mH
+ mE0

mG
+ I

(
mqG

mH
+
mqH

mG

) (9.5)

The strains can be expressed as

YG = Y
0
G + I^G

YH = Y
0
H + I^H

WGH = W
0
GH + I^GH

(9.6)

where Y0
G , Y0

H and W0
GH are the mid-surface strains and have the same definitions as before, i.e.,
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Y>G =
mD>

mG
. Y>H =

mE>

mH
, W>GH =

mD>

mH
+ mE>
mG

(9.7)

and the ^’s are related to the rotations of the normal to the midsurface as follows,

^G =
mqG

mG
, ^H =

mqH

mH
, ^GH =

mqG

mH
+
mqH

mG
(9.8)

In the case of the first order shear deformation theory, the transverse shear strains are in general
non-zero and are defined as follows,

WHI =
mE

mI
+ mF
mH

= qH +
mF0

mH

WGI =
mD

mI
+ mF
mG

= qG +
mF0

mG

(9.9)

9.2 Force and moment resultants

9.2.1 In-plane force and moment resultants

The three-dimensional stress-strain for an off-axis lamina in the G − H − I coordinate system are

YG

YH

YI

WHI

WGI

WGH


=



(11 (12 (13 0 0 (16

(12 (22 (23 0 0 (26

(13 (23 (33 0 0 (36

0 0 0 (44 (45 0
0 0 0 (45 (55 0
(16 (26 (36 0 0 (66





fG

fH

fI

gHI

gGI

gGH


(9.10)

In the case of the first-order shear deformation theory, it is assumed that the transverse normal stress
fI is zero. Setting fI = 0 in Eqn. (9.10) gives the following reduced constitutive relationship for the
in-plane stresses and strains 

YG

YH

WGH

 =
[
(

] 
fG

fH

gGH

 (9.11)

where
[
(

]
is identical to the plane stress-reduced compliance matrix for a lamina in the classical

laminated plate theory. The inverse relationships are
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
fG

fH

gGH

 =
[
&

] 
YG

YH

WGH

 (9.12)

where
[
&

]
is the off-axis reduced stiffness matrix for a lamina. The in-plane force resultants and the

moment resultants follow as,

{#} =
∫ �/2

−�/2
{f} 3I, {"} =

∫ �/2

−�/2
{f} I3I (9.13)

The resulting laminate constitutive relations are the same as before,{
#

"

}
=

[
� �

� �

]
·
{
Y0

^

}
(9.14)

where the laminate rigidities [�], [�] and [�] are the same as those for the classical laminated plate
theory.

9.2.2 Transverse shear force resultants

In the case of an off-axis layer, the structure of the elastic stiffness tensor resembles that of a monoclinic
material. The 6×6 elastic stiffness matrix for an off-axis layer in the G − H − I coordinate system is

[
�

]
=



�11 �12 �13 0 0 �16

�12 �22 �23 0 0 �26

�13 �23 �33 0 0 �36

0 0 0 �44 �45 0
0 0 0 �45 �55 0
�16 �26 �36 0 0 �66


(9.15)

where,
�44 = <

2�44 + =2�55,

�55 = <
2�55 + =2�44,

�45 = (�55 −�44) <=

(9.16)

and < = cos \, = = sin \. Here �44 and �55 are the transverse shear moduli in the prinicipal material
coordinate system, i.e.,

�44 = �23, �55 = �13 (9.17)
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Therefore, the off-axis elastic moduli �44, �55 and �45 can be expressed in terms of the transverse shear
moduli as follows

�44 = <
2�23 + =2�13,

�55 = <
2�13 + =2�23,

�45 = (�13 −�23) <=

(9.18)

It follows from equation (9.15) that,

{
gHI

gGI

}
=

[
�44 �45

�45 �55

]
·
{
WHI

WGI

}
(9.19)

Since the shear strains are constant through the plate thickness, the transverse shear stresses are
constant through the thickness of each ply.

The transverse shear force resultants are obtained by integrating the transverse shear stresses through
the thickness of the laminate {

+H

+G

}
=

∫
�/2

−�/2

{
gHI

gGI

}
3I (9.20)

It follows from equations (9.20) and (9.19) that,

{
+H

+G

}
=

∫
�/2

−�/2

[
�44 �45

�45 �55

]
·
{
WHI

WGI

}
3I (9.21)

which can be written as {
+H

+G

}
=  

[
�44 �45

�45 �55

]
·
{
WHI

WGI

}
(9.22)

where �44, �55 and �45 are the transverse shear rigidities that are define as follows

�8 9 =

∫ �/2

−�/2
�8 93I =

#∑
:=1

(I:+1 − I:) �
(:)
8 9 , 8, 9 = 4, 5 (9.23)

and  is a shear correction factor that is introduced to account for the discrepancy between the actual
stress state and the constant stress state assumed by the first order shear deformation theory. Typically,
 ≤ 1 which amounts to reducing the plate transverse shear stiffnesses. It is noted that using  = 1
will underestimate the deflection.
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9.2.3 Shear correction factor

The shear correction factor  is computed such that the strain energy due to transverse shear stresses
equals the strain energy due to the true transverse shear stresses predicted by the elasticity theory.

Consider a homogeneous beam with rectangular cross section of width 1 and height �. The actual
shear stress distribution through the height of the beam from strength of materials is,

g
(0)
GI =

6+
1�

[(
1
2

)2

−
( I
�

)2
]

, −�
2
≤ I ≤ �

2
(9.24)

where + is the transverse shear force.

The strain energy per unit length of the beam is,

∼
*=

1
2

∫
�

gGIWGI3� =
1

2

∫ �/2

−�/2
gGIWGI3I (9.25)

The strain energy due to the actual stress distribution follows from equations (9.24) and (9.25) as,

∼
*
(0)
=
1

2

∫ �/2

−�/2
gGI

gGI

�
3I

=
1

2�

∫
�/2

−�/2

36+2

12�2

[(
1
2

)2

−
( I
�

)2
]
3I

=
18+2

�1�2

∫
�/2

−�/2

[
1

16
− 1

2
I2

�2 +
I4

�4

]
3I

=
18+2

�1�2

[
I

16
− I3

6�2 +
I5

5�4

]�/2
−�/2

=
18+2

�1�2 · 2 ·
[
�

32
− �

48
+ �

160

]
=

18+2

�1�2 · 2 ·
�

60
=

3+2

5�1�

(9.26)

In the case of an isotropic beam, the strain energy due to constant shear stress through the thickness is

�55 =

∫ �/2

−�/2
�553I =

∫ �/2

−�/2
�3I = �� (9.27)

In the case of the first-order shear deformation theory, the shear force resultant

+G =  �55W
( 5 )
GI (9.28)
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Since the shear force resultant is the shear force per unit width,

+

1
=  (��) W ( 5 )GI ⇒ W

( 5 )
GI =

+

 �1�
(9.29)

The shear force resultant can also be obtained by integrating the shear stress through the thickness, i.e.,

+G =

∫ �/2

−�/2
g
( 5 )
GI 3I (9.30)

Since the transverse shear stress is assumed to be constant through the thickness,

+

1
= g
( 5 )
GI � ⇒ g

( 5 )
GI =

+

1�
(9.31)

Therefore, the strain energy per unit length for a constant stress distribution is,

∼
*
( 5 )

=
1

2

∫ �/2

−�/2
g
( 5 )
GI W

( 5 )
GI 3I

=
1

2

∫ �/2

−�/2

+

1�

+

 �1�
3I

=
1

2
· +2

 �12�2 · � =
+2

2 �1�

(9.32)

Equating the strain energy densities from equations (9.32) and (9.26),

∼
*
(0)
=
∼
*
( 5 ) ⇒ 3+2

5�1�
=

+2

2 �1�
(9.33)

from which it follows that

 =
5
6

(9.34)

Thus, by equating the strain energy densities of the assumed constant transverse shear stress of the
first-order shear deformation theory and the actual parabolic variation of transverse shear stress for an
isotropic beam, we obtain a shear correction factor of  = 5/6

9.3 Equations of motion and boundary conditions

As discussed earlier in Chapter 4, the three-dimensional equations of motion are integrated through
the thickness to obtain the equations of motion for a laminated plate in terms of the force and moment
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resultants. Following the procedure in Sec.4.2.2 we obtain the following five equations of motion,

m#G

mG
+
m#GH

mH
=

∫ �/2

−�/2
d
m2D

mC2
3I (9.35a)

m#GH

mG
+
m#H

mH
=

∫ �/2

−�/2
d
m2E

mC2
3I (9.35b)

m+G

mG
+
m+H

mH
+@ (G, H, C) =

∫ �/2

−�/2
d
m2F

mC2
3I (9.35c)

m"G

mG
+
m"GH

mH
−+G =

∫ �/2

−�/2
d
m2D

mC2
I3I (9.35d)

m"GH

mG
+
m"H

mH
−+H =

∫ �/2

−�/2
d
m2E

mC2
I3I (9.35e)

The time derivatives terms on the right hand side of equations (9.35) can be expressed in terms of the
mid-surface displacements and rotations of the normal as follows,∫ �/2

−�/2
d
m2D

mC2
3I =

∫ �/2

−�/2
d

(
m2D0

mC2
+ I m

2qG

mC2

)
3I

= �0
m2D0

mC2
+ �1

m2qG

mC2
(9.36a)∫ �/2

−�/2
d
m2E

mC2
3I = �0

m2E0

mC2
+ �1

m2qH

mC2
(9.36b)∫ �/2

−�/2
d
m2F

mC2
3I = �0

m2F0

mC2
(9.36c)∫ �/2

−�/2
d
m2D

mC2
I3I = �1

m2D0

mC2
+ �2

m2qG

mC2
(9.36d)∫ �/2

−�/2
d
m2E

mC2
I3I = �1

m2E0

mC2
+ �2

m2qH

mC2
(9.36e)

The equations of motion for the first order shear deformation theory follow from equations (9.35) and
(9.36),
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m#G

mG
+
m#GH

mH
= �0

m2D0

mC2
+ �1

m2qG

mC2
(9.37a)

m#GH

mG
+
m#H

mH
= �0

m2E0

mC2
+ �1

m2qH

mC2
(9.37b)

m+G

mG
+
m+H

mH
+@ (G, H, C) = �0

m2F0

mC2
(9.37c)

m"G

mG
+
m"GH

mH
−+G = �1

m2D0

mC2
+ �2

m2qG

mC2
(9.37d)

m"GH

mG
+
m"H

mH
−+H = �1

m2E0

mC2
+ �2

m2qH

mC2
(9.37e)

The five partial differential equations need to be solved to obtain D0, E0, F0, qG and qH . As in the case of
the classical laminated plate theory, if all the layers have the same density d,

�0 = d�, �1 = 0, �2 =
d�3

12
(9.38)

where � is the thickness of the laminated plate.

9.3.1 Boundary conditions

At G = 0, 0, the following boundary conditions need to be specified,

D0 or #G

E0 or #GH

F0 or +G

qG or "G

qH or "GH

(9.39)

9.3.2 Clamped edges

If the laminate is clamped at G = 0 or G = 0, the mid-surface displacements are zero. In addition, the
normal is restrained against rotation at the clamped edges. Therefore,

D0 = E0 = F0 = 0, qG = qH = 0 (9.40)

Note that mF0/mG need not be 0 at a clamped edge.
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9.3.3 Free edges

If the laminate is free at G = 0 or G = 0, then the force and moment resultants are zero. Therefore,

#G = #GH = 0, +G = 0, "G = "GH = 0 (9.41)

9.3.4 Simply supported edges

There are several different types of simply supported boundary conditions that can be applied at the
edges G = 0 and G = 0. An all cases, the deflection F0 and moment "G are zero. For example,

E0 = F0 = 0, "G = 0, #G = 0, qH = 0 (9.42)

9.4 Cylindrical bending of symmetric cross-ply laminates

Let’s consider the cylindrical bending of a symmetric cross-ply laminate as shown in Fig. 9.3.

Figure 9.3: Cylindrical bending of a symmetric cross-ply laminate

In the case of a symmetric cross-ply laminate, the following rigidities are identically zero

�16 = �26 = 0, �45 = 0, �8 9 = 0, �16 = �26 = 0 (9.43)

In the case of cylindrical bending, we assume that

m (·)
mH

= 0, E = 0 (9.44)
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9.4.1 Displacements

Since the laminate is symmetric and cross-ply, it is assumed that only the transverse deflection F0 and
rotation qG of the normal in the G − I plane are non-zero, i.e.,

D0(G) = E0(G) = 0, F0 = F0 (G) , qG = qG (G) , qH (G) = 0 (9.45)

9.4.2 Strains

The strains follow from the definition (9.7) and the assumed forms (9.45) for the displacements and
rotations as,

Y0
G =

mD0

mG
= 0 (9.46a)

Y0
H =

mE0

mH
= 0 (9.46b)

W0
GH =

mD0

mH
+ mE0

mG
= 0 (9.46c)

WHI = qH +
mF0

mH
= 0 (9.46d)

WGI = qG +
mF0

mG
(9.46e)

The ^’s follow from (9.8) and (9.45),

^G =
mqG

mG
(9.47a)

^H =
mqH

mH
= 0 (9.47b)

^GH =
mqG

mH
+
mqH

mG
= 0 (9.47c)

9.4.3 Force and moment resultants

The in-plane force resultants and moment resultants follow from (9.14), (9.46) and (9.47)

#G = #H = #GH = 0 (9.48a)
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"G = �11^G = �11
mqG

mG
(9.48b)

"H = �12^G = �12
mqG

mG
(9.48c)

"GH = 0 (9.48d)

The transverse shear force resultants are obtained using (9.22) and (9.46){
+H

+G

}
=  

[
�44 ��

�* 0
�45

�
��* 0

�45 �55

]
·
{
��
�* 0

WHI

WGI

}
(9.49)

from which it follows that
+H =  �44��

�*0
WHI = 0 (9.50a)

+G =  �55WGI =  �55

(
qG +

mF0

mG

)
(9.50b)

9.4.4 Equilibrium equations

The equilibrium equations (9.37) simplify to,

m�
�>

0
#G

mG
+
m��
�* 0

#GH

mH
= 0 X Satisfied (9.51a)

m��
�* 0

#GH

mG
+
�
�
��7

0
m#H

mH
= 0 X Satisfied (9.51b)

m+G

mG
+
�
�
��7

0
m+H

mH
+ @ (G) = 0 ⇒  �55

(
mqG

mG
+ m

2F0

mG2

)
+ @ (G) = 0 (9.51c)

m"G

mG
+
�
�
���

0
m"GH

mH
−+G = 0 ⇒ �11

m2qG

mG2 −  �55

(
qG +

mF0

mG

)
= 0 (9.51d)

m��
�* 0

"GH

mG
+
�
�
���

0
m"H

mH
−���

0
+H = 0 X Satisfied (9.51e)



9 First Order Shear Deformation Theory 146

Thus, three of the equilibrium equations are identically satisfied. Integrating equation (9.51c) with
respect to G gives,

qG +
mF0

mG
= − 1

 �55

∫
@ (G) 3G (9.52)

Substituting equation (9.52) into equation (9.51d) gives

�11
m2qG

mG2 =  �55

(
qG +

mF0

mG

)
= −

∫
@ (G) 3G (9.53)

Equation (9.53) is integrated twice to obtain the rotation qG . The resulting expression for qG is substi-
tuted into equation (9.52) and integrated once to obtain F0 (G). The integration constants are obtained
by enforcing the boundary conditions at G = 0 and G = 0.

EXAMPLE 9.1: Simply supported symmetric cross-ply laminates under uniform loading

In this example, we consider the cylindrical bending of a symmetric cross-ply laminate that is
subjected to the following simply supported boundary conditions at the edges G = 0 and G = 0

F0 = 0 at G = 0, 0

"G = 0 at G = 0, 0
(9.54)

The laminate is subjected to uniformly distributed load of magnitude @0, i.e., @ (G) = @0 as shown in
Fig. 9.4.

Figure 9.4: Cylindrical bending of a simply supported symmetric cross-ply laminate under a uniform
distributed load

In the case of a uniformly distributed load, the right hand side of equation (9.53) can be explicitly
integrated to obtain

�11
m2qG

mG2 = −
∫

@ (G) 3G = −
∫

@03G = −@0 (G + 210) (9.55)
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Integrating equation (9.55) twice w.r.t. G yields,

�11
mqG

mG
= −@0

(
G2

2
+ 210G + 220

2
)

(9.56)

�11qG = −@0

(
G3

6
+ 210G

2

2
+ 220

2G + 230
3
)

(9.57)

Therefore, it follows that

qG (G) = −
@0

�11

(
G3

6
+ 210G

2

2
+ 220

2G + 230
3
)

(9.58)

The deflection F0 is obtained by integrating the term on the right hand side of (9.52) and substituting
for qG from (9.58) as follows

qG +
mF0

mG
= − 1

 �55

∫
@ (G) 3G

⇒ qG +
mF0

mG
= − 1

 �55
@0 (G + 210)

⇒ mF0

mG
=
@0

�11

(
G3

6
+ 210G

2

2
+ 220

2G + 230
3
)
− 1
 �55

@0 (G + 210)

⇒ F0 (G) =
@0

�11

(
G4

24
+ 210G

3

6
+ 220

2G2

2
+ 230

3G + 240
4
)
− 1
 �55

@0

(
G2

2
+ 210G

)
(9.59)

The integration constants 21, 22, 23 and 24 are obtained by enforcing the boundary conditions at G = 0
and G = 0.

The bending moment "G is obtained using (9.48b) and (9.58)

"G = �11
mqG

mG
= −@0

(
G2

2
+ 210G + 220

2
)

(9.60)

The boundary conditions at G = 0 yield

F0 (0) = 0 ⇒ 24 = 0

"G (0) = 0 ⇒ 22 = 0
(9.61)

Substituting for the constants 22 and 24 from equation (9.61) into equations (9.59), (9.58) and (9.60)
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for F0, "G and qG , respectively, yields

F0 (G) =
@0

�11

(
G4

24
+ 210G

3

6
+ 230

3G

)
− @0

 �55

(
G2

2
+ 210G

)
qG (G) = −

@0

�11

(
G3

6
+ 210G

2

2
+ 230

3
)

"G (G) = −@0

(
G2

2
+ 210G

) (9.62)

The boundary conditions at G = 0 yield

"G (0) = 0 ⇒ 02

2
+ 210

2 = 0

⇒ 21 = −
1
2

F0 (0) = 0 ⇒ @0

�11

(
04

24
− 0

4

12
+ 230

4
)
− @0

 �55

(
02

2
− 0

2

2

)
= 0

⇒ @00
4

�11

(
1
24
− 1

12
+ 23

)
= 0

⇒ 23 =
1

24

(9.63)

Substituting the constants 21 and 23 from equation (9.63) into Eqn. (9.62) for F0 yields,

F0 (G) =
@0

�11

(
G4

24
− 0G

3

12
+ 0

3G

24

)
− @0

 �55

(
G2

2
− 0G

2

)
⇒ F0 (G) =

@0

24�11

(
G4 − 20G3 + 03G

)
+ @0G

2 �55
(0 − G)

(9.64)

Substituting for the constants 21 and 23 from equation (9.63) into Eqn. (9.62) for qG yields,

qG (G) = −
@0

�11

(
G3

6
− 0G

2

4
+ 0

3

24

)
= − @0

24�11

(
4G3 − 60G2 + 03

)
(9.65)

The maximum vertical defection F<0G is obtained by evaluating the deflection F0 at the mid-span
G = 0/2

F<0G = F0

(0
2

)
=

@0

24�11

(
04

16
− 204

8
+ 0

4

2

)
+ @0

2 �55

0

2

(0
2

)
(9.66)

which simplifies to

F<0G =
5@00

4

384�11︸   ︷︷   ︸
CLPT prediction

maximum deflection

+ @00
2

8 �55︸  ︷︷  ︸
Shear deformation

(9.67)
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The maximum deflection can be written as

F<0G = F
′
<0G +

@00
2

8 �55
(9.68)

where F′<0G = 5@00
4/(384�11) is the classical laminated plate theory prediction for the maximum

deflection.

The maximum deflection F<0G can be expressed as

F<0G = F
′
<0G (1 + () (9.69)

where the coefficient ( captures the contribution of shear deformation to the overall deflection and is
defined as

( =
@00

2

8 �55
· 1
F′<0G

=
@00

2

8 �55
· 384�11

5@004
=

48�11

5 �5502 (9.70)

In the case of a single orthotropic layer, the bending rigidity �11 is

�11 =
1
3
&11

(
I3

2 − I
3
1

)
=

1
3
&11

[(
�

2

)3

−
(
−�

2

)3
]
=
&11�

3

12
(9.71)

and the shear rigidity �55 is

�55 =

#∑
:=1

(I:+1 − I:) �
(:)
55 = �13� (9.72)

It follows from equations (9.70), (9.71) and (9.72) that for a single orthotropic plate,

( =
48�11

5 �5502 =
4&11�

3

5 (�13�) 02 =

(
4

5 

) (
&11

�13

) (
�

0

)2

(9.73)

The contribution from the shear deformation can be large when,

1. &11/�13 is large, i.e., when the transverse shear modulus is small compared the in-plane Young’s
modulus

In the case of a unidirectional IM7-8552 carbon fiber reinforced ply,

&11 = 168.44 GPa, �13 = �12 = 4.80 GPa ⇒ &11

�13
= 35.1 (9.74)

2. �/0 is large, i.e., in the case of thick or moderately thick plates. Assuming a shear correction
factor of  = 5

6 ,
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If �
0
= 1

20 then ( = 4
5 (35.1)

(
1
20

)2
= 0.084, i.e., a 8.4% increase in the deflection.

If �
0
= 1

10 then ( = 4
5 (35.1)

(
1
10

)2
= 0.337, i.e., a 33.7% increase in deflection!

Figure 9.5: Normalized deflection of a laminated plate for varying length to thickness ratios

In the case of an isotropic material,

&11 =
�

1 − a2 , �13 = � =
�

2 (1 + a) ⇒ &11

�13
=

2 (1 + a)(
1 − a2

) = 2
1 − a (9.75)

In the case of an Aluminum plate with a = 1
3 , �

0
= 1

10 and an assumed value of  = 5
6 ,

( =
4

5 

(
&11

�13

) (
�

0

)2

= 0.029 (9.76)

i.e., a 2.9% increase in deflection due to transverse shear compared to the 33.7% increase for a
unidirectional IM7-8852 plate.
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9.5 Free vibration of symmetric cross ply laminates in cylindrical bending

Consider the cylindrical bending vibration of a simply supported cross-ply laminate shown in Fig.
9.6.

Figure 9.6: Free vibration of a simply supported cross-ply laminate

The boundary conditions at G = 0 and G = 0 are assumed to be,

F0 = 0, "G = 0, #G = 0, E0 = 0, qH = 0 (9.77)

In the case of a symmetric cross-ply laminate

�16 = �26 = 0, �45 = 0, �8 9 = 0, �16 = �26 = 0 (9.78)

We assume that
m (·)
mH

= 0, D0(G) = 0, E0(G) = 0, qH (G) = 0 (9.79)

The mid-surface deflection F0(G, C) and rotation qG (G, C) are assumed to have the following forms

F0 (G, C) = ,< sin
<cG

0
48lC

qG (G, C) = Φ< cos
<cG

0
48lC

(9.80)

where the integer < defines the mode shape.

9.5.1 Strains

The strains follow from the definition and Eqn. (9.80) as,

Y0
G = 0, Y0

H = 0, W0
GH = 0 (9.81a)

WHI = qH +
mF0

mH
= 0 (9.81b)

WGI = qG +
mF0

mG
=

[
Φ< +,<

(<c
0

)]
cos

<cG

0
48lC (9.81c)
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The ^’s follow from the definitions and and Eqn. (9.80)

^G =
mqG

mG
= −Φ<

(<c
0

)
sin

<cG

0
48lC (9.82a)

^H =
mqH

mH
= 0 (9.82b)

^GH =
�
�
��7

0
mqG

mH
+
m���

0
qH

mG
= 0 (9.82c)

9.5.2 Force and moment resultants

The force and moment resultants follow from the definitions (9.14), the strains (9.81) and the ^’s (9.82)

#G = #H = #GH = 0 (9.83a)

"G = �11^G = −�11Φ<

(<c
0

)
sin

<cG

0
48lC (9.83b)

"H = �12^G = −�12Φ<

(<c
0

)
sin

<cG

0
48lC (9.83c)

"GH = 0 (9.83d)

The transverse shear force resultants follow from (9.22) and the transverse shear strains (9.81)

{
+H

+G

}
=  

[
�44 ��

�* 0
�45

�
��* 0

�45 �55

]
·
{
��
�* 0

WHI

WGI

}
(9.84)

It follows from equation (9.84) that
+H = 0 (9.85a)

+G =  �55WGI =  �55

[
Φ< +,<

(<c
0

)]
cos

<cG

0
48lC (9.85b)
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9.5.3 Equations of motion

The equation of motion (9.37a) is identically satisfied since

m�
�>

0
#G

mG
+
m�
��*

0
#GH

mH
= �0

m2
��>

0
D0

mC2
+��7

0
�1

m2qG

mC2
X Satisfied (9.86a)

Similarly, the equation of motion (9.37b) is identically satisfied

m��
�* 0

#GH

mG
+
�
�
��7

0
m#H

mH
= �0

m2
��>

0
E0

mC2
+��7

0
�1

m2qH

mC2
X Satisfied (9.86b)

The equation of motion (9.37c) reduces to

m+G

mG
+
�
�
��7

0
m+H

mH
+����:

0
@ (G, C) = �0

m2F0

mC2

⇒ − �55

[
Φ< +,<

(<c
0

)] (<c
0

)
sin

<cG

0
48lC = −�0,<l2 sin

<cG

0
48lC

⇒  �55

(<c
0

)
Φ< +

(
 �55

<2c2

02 − �0l
2
)
,< = 0

(9.86c)

The equation of motion (9.37d) reduces to

m"G

mG
+
m��

�* 0
"GH

mH
−+G = ��7

0
�1

m2D0

mC2
+ �2

m2qG

mC2

⇒ −�11Φ<

(<c
0

)2
cos

<cG

0
48lC −  �55

[
Φ< +,<

(<c
0

)]
cos

<cG

0
48lC =

− �2Φ<l2 cos
<cG

0
48lC

⇒
(
�11

<2c2

02 +  �55 − �2l2
)
Φ< +  �55

(<c
0

)
,< = 0

(9.86d)

The equation of motion (9.37e) is identically satisfied

m�
��*

0
"GH

mG
+
�
�
���

0
m"H

mH
−���

0
+H = ��7

0
�1

m2E0

mC2
+ �2

m2
���

0
qH

mC2
X Satisfied (9.86e)

Equations (9.86c) and (9.86d) can be written in matrix form as,
(
�11

<2c2

02 +  �55 − �2l2
)

 �55
(
<c
0

)
 �55

(
<c
0

) (
 �55

<2c2

02 − �0l2
) ·

{
Φ<

,<

}
=

{
0
0

}
(9.87)
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For a non-tirivial solution, the determinant of the matrix in (9.87) must vanish. Therefore,

 �55
<2c2

02

(
�11

<2c2

02 +��
��: �55

)
−

(
�0�11

<2c2

02 + �0 �55 + �2 �55
<2c2

02

)
l2

+ �0�2l4 −
�
��

�
��
�*

 2�2
55
<2c2

02 = 0

(9.88)

Eqn. (9.88) simplifies to,

�0�2l
4 −

(
�0�11

<2c2

02 + �0 �55 + �2 �55
<2c2

02

)
l2 +  �11�55

<4c4

04
= 0 (9.89)

which can be expressed as

l4 −
(
�11

�2

<2c2

02 +
 

�2
�55 +

 

�0
�55

<2c2

02

)
l2 +  �11�55

�0�2

<4c4

04
= 0 (9.90)

It is possible to solve Eqn. (9.90) for the natural frequency l< with shear deformation and rotary inertia
included.

If the rotary inertia is neglected by setting �2 = 0 in Eqn. (9.89), we obtain

l2
< =

 �11�55
<4c4

04

�0

(
�11

<2c2

02 +  �55

) (9.91)

The natural frequency l< follows from equation (9.91) as,

l< =
<2c2

02

√
�11

�0

√
 �55

�11
<2c2

02 +  �55
= l′<

√
1

1 + (̃
(9.92)

where,

l′< =
<2c2

02

√
�11

�0
(9.93)

is the natural frequency obtained using the classical laminated plate theory, i.e., no shear deformations,
and,

(̃ =
�11<

2c2

 �5502 (9.94)

is the shear deformation factor. (̃ captures the effect of transverse shear deformations on the natural
frequencies. In the case of a single orthotropic layer,

�11 =
&11�

3

12
, �55 = �13� (9.95)
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Therefore, it follows from equations (9.95) and (9.94) that,

(̃ =
�11<

2c2

 �5502 =
&11�

3<2c2

12 �13�02 =
&11�

2<2c2

12 �1302 =
c2

12 

(
&11

�13

) (
�

0

)2

<2︸     ︷︷     ︸
( <�0 )2

(9.96)

The shear deformation factor (̃ increases as &11/�13, �/0 or < increase, i.e., if �13 is small and/or the
plate is moderately thick and/or higher modes. As ( increases, the natural frequency l< decreases,
i.e., shear deformation decreases the natural frequency as shown in Fig. 9.7.

Figure 9.7: Normalized natural frequency for varying length to thickness ratio

9.6 Navier solution for cross ply laminates

Consider the bending of cross-ply rectangular laminates that are simply supported on all edges.

For a rectangular cross-ply laminate,

�16 = �26 = 0, �16 = �26 = 0, �16 = �26 = 0, �45 = 0 (9.97)
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The boundary conditions at G = 0 and G = 0 are,

F0 = 0, "G = 0, #G = 0, E0 = 0, qH = 0 (9.98)

The boundary conditions at H = 0 and H = 1 are,

F0 = 0, "H = 0, #H = 0, D0 = 0, qG = 0 (9.99)

The Navier solution for the plate bending is,

The loads @ (G, H) are expanded as a double Fourier series as,

@ (G, H) =
∞∑
<=1

∞∑
==1

&<= sin
<cG

0
sin

=cH

1
(9.100a)

The displacement D0 is expanded as,

D0 =

∞∑
<=1

∞∑
==1

*<= cos
<cG

0
sin

=cH

1
(9.100b)

The displacement E0 is expanded as,

E0 =

∞∑
<=1

∞∑
==1

+<= sin
<cG

0
cos

=cH

1
(9.100c)

The displacement F0 is expanded as,

F0 =

∞∑
<=1

∞∑
==1

,<= sin
<cG

0
sin

=cH

1
(9.100d)

The rotation qG is expanded as,

qG =

∞∑
<=1

∞∑
==1

-<= cos
<cG

0
sin

=cH

1
(9.100e)

The rotation qH is expanded as,

qH =

∞∑
<=1

∞∑
==1

.<= sin
<cG

0
cos

=cH

1
(9.100f)
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As with the classical laminated plate theory, substituting equations (9.100) into the equilibrium equa-
tions will yield a system of equations for*<=, +<=,,<=, -<= and .<=,

[ ]5×5



*<=

+<=

,<=

-<=

.<=


=



0
0

&<=

0
0


(9.101)

The values of*<=, +<=,,<=, -<= and .<= can be calculated for each < and =.
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Sandwich composites are a class of composite materials that consist of two thin laminated face sheets
that are separated by a thick layer of a less dense material known as the core. The face sheets bear most
of the bending loads while the core supports the transverse shear force as shown in Fig. 10.1.

Figure 10.1: Stresses in the face sheets and core of a sandwich composite

10.1 Geometry and representative properties

10.1.1 Geometry of sandwich composites

The top and bottom face sheets consists of multiple laminae each of thickness ℎ. The number of laminae
in the top and bottom face sheets are #C and #1, respectively. The thickness of the top and face sheets
are,

�C = #C · ℎ

�1 = #1 · ℎ
(10.1)

where �C is the thickness of the top face sheet and �1 is the thickness of the bottom face sheet. The
core is of thickness �2 .

The total number of layers, including the core, is

# = #1 + #C + 1 (10.2)
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Figure 10.2: Sandwich composite layer numbering and interface locations

The layers are numbered from bottom to top with the core numbered #1 + 1. The orientations of the
plies are denoted by \: with : varying from 1 to #1 + #C + 1.

The midsurface of the core is taken as the reference surface I = 0. The locations of the interfaces are as
follows:

Bottom facing (1 ≤ : ≤ #1 + 1)

I: = −
�2

2
− �1 + (: − 1) ℎ (10.3)

Note that the I-coordinate of the bottom surface of the core is

I#1+1 = −
�2

2
− �1 +���*

�1
#1ℎ = −�2

2
(10.4)

as expected.

Top facing (#1 + 2 ≤ : ≤ #1 + #C + 2)

I: =
�2

2
+ (: − #1 − 2) ℎ (10.5)
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Note that the I-coordinate of the top surface of the laminate is

I#1+#C+2 =
�2

2
+

(
��#1 + #C + �2 −��#1 − �2

)
ℎ =

�2

2
+ #Cℎ =

�2

2
+ �C (10.6)

as expected.

10.1.2 Representative properties of core materials

The representative density, transverse shear modulus and shear strength for different core materials
are listed below.

(a) Balsa (CK57)

Density d = 150 kg/m3

Shear modulus �2 = 58.7 MPa
Shear strength �B2 = 3.7 MPa

(b) Divinycell foam (H100)

Density d = 100 kg/m3

Shear modulus �2 = 50 MPa
Shear strength �B2 = 1.8 MPa

(c) Honeycomb core

Honeycomb cores have different shear moduli in the 1-3 and 2-3 planes where the 1- or L-direction is
the ribbon direction and the 2- or W-direction is the transverse direction.

Figure 10.3: Honeycomb core
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The properties of Hexcel HRP/F50-45 fiberglass cloth reinforced phenolic resin are,
Density d = 72 kg/m3

Shear modulus in the !-direction �13 = 220 MPa
Shear modulus in the,-direction �23 = 90 MPa

For reference, the density of carbon fiber reinforced composites is approximately 1600 kg/m3.

10.2 Analysis of sandwich composites

Sandwich composites exhibit significant shear deformation due to their low shear rigidity and high
bending rigidity. Therefore, we use the first order shear deformation to analyze sandwich composite
plates.

10.2.1 Assumptions

The assumptions used for the analysis of sandwich composites are,

1. The face sheets are assumed to be made of the same material with identical properties and ply
thickness ℎ. The plies are assumed state of plane stress, i.e.,

fI = 0, gGI = gHI = 0 (10.7)

2. The core is assumed to have transverse shear moduli �GI and �HI in the G − I and H − I planes
respectively. The in-plane elastic moduli and stresses in the core are assumed to be negligible,
i.e.,

f
(2)
G = f

(2)
H = g

(2)
GH = 0, �

(2)
1 = �

(2)
2 = �

(2)
12 = 0 (10.8)

10.2.2 Analysis of sandwich composites

Sandwich composites are analyzed using the first order shear deformation theory. The displacements
in the FSDT are assumed to be

D = D0 (G, H) + IqG (G, H)

E = E0 (G, H) + IqH (G, H)

F = F0 (G, H)

(10.9)

where D0, E0 and F0 are the mid-surface displacements, and qG and qH are the rotations of the normals
in the G − I and H − I planes, respectively. The through-thickness variation of the displacement D is
shown in Fig. 10.4.
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Figure 10.4: Kinematics of a sandwich composite

10.2.3 In-plane and bending rigidities

In order to analyze a sandwich composite plate using FSDT, we first need to calculate the ��� matrix
of laminate rigidiites and the transverse shear rigidities �44, �55 and �45.

The [&] for the facing plies are calculated as before. The contribution of the core to the bending
rigidities of sandwich composites is neglected by setting [&] of the core is set equal to zero, i.e.,[

&

] (#1+1)
= [0] (10.10)

Therefore, the �, � and � matrices are evaluated as follows

[�] =
#1∑
:=1

(I:+1 − I:)
[
&

] (:)
+
#1+#C+1∑
:=#1+2

(I:+1 − I:)
[
&

] (:)
[�] = 1

2

#1∑
:=1

(
I2
:+1 − I

2
:

) [
&

] (:)
+ 1

2

#1+#C+1∑
:=#1+2

(
I2
:+1 − I

2
:

) [
&

] (:)
[�] = 1

3

#1∑
:=1

(
I3
:+1 − I

3
:

) [
&

] (:)
+ 1

3

#1+#C+1∑
:=#1+2

(
I3
:+1 − I

3
:

) [
&

] (:)
(10.11)

10.2.4 Transverse shear rigidities and shear force resultants

Shear correction factors are not used for sandwich composites since the shear stress and shear strain
are fairly constant throughout the thickness of the core as shown in Fig. 10.5. In other words, the shear
correction factor
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 = 1 (10.12)

Furthermore, the transverse shear stresses in the facings are assumed to be negligible. The transverse

Figure 10.5: Transverse shear stress distribution in a sandwich composite

shear stresses in the core are {
gHI

gGI

}
=

[
�HI 0

0 �GI

] {
WHI

WGI

}
(10.13)

where�GI and�HI are the transverse shear modului of the core in the G − I and H− I planes, respectively.
It follows from equation (10.13) that the transverse shear force resultants

{
+H

+G

}
=

∫
�2/2

−�2/2

{
gHI

gGI

}
3I =

[
�44 0
0 �55

] {
WHI

WGI

}
(10.14)

where

�44 = �2�HI

�55 = �2�GI
(10.15)

Note that the transverse shear rigidity �45 = 0 since it is assumed that the principal material directions
of the core are parallel to the G or H directions, i.e. \ (#1+1) equals 0◦ or 90◦.

Once we have the rigidities [�], [�], [�], �44 and �55, we can use the first order shear deformation
theory to analyze sandwich composites by setting the shear correction factor  = 1.

EXAMPLE 10.1: Cylindrical bending of a symmetric cross-ply sandwich composite plate

Consider the cylindrical bending of a symmetric cross-ply sandwich composite that is simply sup-
ported and subjected to a uniformly distributed load as shown in Fig. 10.6.
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Figure 10.6: Simply supported sandwich composite subjected to a uniform distributed load

An example of a symmetric cross-ply sandwich composite is: [0/90/0/︸   ︷︷   ︸
Bottom

core/0/90/0︸  ︷︷  ︸
Top

].

In the case of a symmetric sandwich composite with cross-ply laminated face sheets,

[�] = [0], �16 = �26 = 0, �16 = �26 = 0 (10.16)

The transverse shear rigidities are

�44 = �2�HI , �55 = �2�GI , �45 = 0 (10.17)

The same solution process used earlier to analyze the bending problem using the first order shear
deformation theory is used for the analysis of sandwich composite plates. In the case of a simply
supported sandwich composite plate in cylindrical bending, the maximum deflection for a uniformly
distributed load is

F<0G =
5@00

4

384�11
+ @00

2

8 �55
=

5@00
4

384�11
+ @00

2

8�55
(10.18)

where the shear correction factor  = 1.
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A
Abaqus Tutorial

A.1 Problem Description

Consider the cross-ply asymmetric laminated square plate shown in Fig. A.1 of length 0 = 0.3 m
in the G-direction and width 1 = 0.3 m in the H-direction. The laminated plate is made of IM7/8552
unidirectional carbon fiber-reinforced plies whose properties are listed in Sec. 1.10.1. The laminate has a
stacking sequence of [02/902] with plies of thickness ℎ = 0.2 mm each. The laminated plate is subjected
to a concentrated point load of magnitude % = 1# acting vertically downward at G = 0/4 = 0.075 m
and H = 1/2 = 0.15 m.

Figure A.1: [02/902] laminate under a point load

The laminated plates is supported by S2 simply supported on all edges, i.e.,

F0 = 0 , "G = 0 , #G = 0 , E0 = 0 at G = 0, 0

F0 = 0 , "H = 0 , D0 = 0 , #H = 0 at H = 0, 1
(A.1)

We are interested in evaluating the following,
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1. the maximum vertical deflection of the plate
2. through-thickness variation of stresses at the center of the plate
3. through-thickness variation of the failure index at the center of the plate

The finite element analysis of the laminated composite plate will be performed using Abaqus. The
finite element model is created using the Abaqus/CAE (Complete Abaqus Environment) graphical
user interface. The preprocessing, simulation and postprocessing are performed using modules as
described in the following sections.

NOTES

• Abaqus does not have any default or built-in system of units. Make sure you use consistent units
to specify input data. In this tutorial, we will use SI units of :6, < and B. Accordingly, the mass
density is specified in :6/<3, force in # , elastic moduli and stresses in %0 and energy in �.

A.2 Abaqus/CAE startup

After starting Abaqus/CAE, the Start Session dialog box will appear. The Create Model Database
startup option will allow you to begin a new analysis. Select With Standard/Explicit Model as shown
in Fig. A.2.

Figure A.2: Abaqus startup screen

That will open the main window as shown in Fig. A.3.
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Figure A.3: Abaqus main window

Click File→ Set Work Directory to choose the work directory to save the model and output files as
shown in Fig. A.4.

Figure A.4: Setting the work directory

Click File→ Save to save the model. You will be asked to enter a file name when you save the model
for the first time as shown in Fig. A.5.
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Figure A.5: Saving the model

It is recommended that you save the model periodically so that you don’t lose your work.

Abaqus/CAE is divided into units called modules with each module containing only those tools that
are relevant to the specific portion of the modeling task. You can select a module from the Module list
as shown in Fig. A.6.

Figure A.6: Abaqus modules

A.3 Module: Part
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Upon startup, Abaqus/CAE enters the Part module by default. In the Part module, you will find the

toolbox area with a set of icons. Click on the icon to open the Create Part dialog box shown in Fig.
A.7.

Figure A.7: Create Part dialog box

In the Create Part dialog box,

• Name the part, e.g., Laminated_Plate
• Choose the 3D, Deformable, Shell and Planar options
• In the Approximate size text field, type 2.0 for the size of the drawing canvas so that is bigger

than the largest dimension of the plate which is 0.3 m
• Click Continue to exit the Create Part dialog box

Abaqus/CAE enters the Sketcher and creates a Sketcher grid. Click on the and draw a rectangle
or a square as shown in Fig. A.8.
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Figure A.8: Drawing a rectangle

After drawing the rectangle, use the Add Dimension tool to dimension the width and height of
the rectangle. Click on the top or bottom horizontal edge and enter a new dimension of 0.3 m in the
prompt area. Click on the left or right vertical edge and enter a new dimension of 0.3 m in the prompt
area. The dimensions of the rectangle should match the dimensions of the plate as shown in Fig. A.9.

Figure A.9: Dimensioning the rectangle

After dimensioning the sketch, click the Esc key on your keyboard then click on Done in the prompt
area to exit the Sketcher. You should now see a rectangular part in the Part module as shown in Fig.
A.10. This represents the mid-surface of the laminated composite plate.
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Figure A.10: Rectangular part representing laminate mid-surface

A.4 Module: Property

In this module the properties of the plies will be entered into Abaqus and the composite layup, or ply
orientations, created. Switch from the Part to the Property module in the Context bar.

A.4.1 Defining material properties

To create a material corresponding to the fiber-reinforced plies, under the Property module, click on

the Create Material tool icon and the Edit Material dialog box appears as shown in A.11. Name
the material, e.g., IM7_8552.

We will use the properties of IM7/8552 unidirectional carbon fiber-reinforced laminae listed in Sec.
1.10.1. Enter the ply mass density by clicking on General→Mass Density. The density is not needed
for static problems, but needs to be specified for vibration and dynamic problems.
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Figure A.11: Mass density

Next, click on Mechanical → Elasticity → Elastic to enter the elastic properties of the laminae. In
the Type drop-down menu choose Lamina as shown in Fig. A.12. Enter the lamina properties �1, �2,
a12, �12. The transverse shear moduli �13, �23 also need to be specified although they do not have a
significantly influence on the response of thin laminates. They are necessary to capture the transverse
shear deformation effects for moderately thick laminates. You can enter approximate values for �13,
�23 if they unknown.

Figure A.12: Lamina elastic properties

In order to perform failure analysis the material strength data needs to be entered. Select the Subop-
tions menu on the far right of Type: Lamina and choose Fail Stress. In the Suboption Editor dialog
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box that opens, enter the tensile strength �1C in the fiber direction, the compressive strength �12 in
the fiber direction, the tensile strength �2C in the transverse direction, the compressive strength �22

in the transverse direction and the shear strength �6 as shown in Fig. A.13. In the case of Tsai-Wu
failure theory, enter the cross product coefficient 512/

√
511 522. In the absence of biaxial experimental

data, a value of −0.5 is normally assumed for the cross product coefficient. If the equibiaxial strength
of the lamina is known, the cross product coefficient can be left blank and the biaxial stress limit f180G
entered in the last column.

Figure A.13: Specifying failure properties

Click OK on all the dialog boxes to save the material properties.

A.4.2 Define the composite layup

Click on the icon in the Property module to create the composite layup. The Create Composite
Layup dialog box shown in Fig. A.14 will open. Name the layup, e.g., Laminate_Lay_up, specify an
Initial ply count of 4, choose Conventional Shell for Element Type and click Continue.
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Figure A.14: Create composite layup layup dialog box

In the Edit Composite Layup dialog box that appears next we can specify the stacking sequence, or
the orientation of the plies. First a global/datum coordinate system needs to be specified. Under Layup
Orientation, click on the drop-down menu under Definition and choose Coordinate System. Next

click on as shown in Fig. A.15 to create datum coordinate system.

Figure A.15: Specify datum coordinate system for layup

This will open the Create Datum CSYS dialog box. Name the datum coordinate system, e.g., Datum,
and choose Rectangular to create a Cartesian coordinate system as shown in Fig. A.16.

Figure A.16: Create datum coordinate system dialog box
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In the mid-surface geometry, choose the bottom left corner (point number 1) in Fig. A.17 as the origin.
Next, for the point on the G axis, choose point number 2. Finally, for the point in the G − H plane, pick
point number 3. This will create the datum coordinate system. Click Cancel to exit the Create Datum
CSYS dialog.

Figure A.17: Module "Property": Layup creation datum creation

Once the datum coordinate system has been created, Abaqus will return to the Edit Composite Layup

dialog as shown in Fig. A.18. Next, click on next to Datum and select the datum coordinate system
you just created as the reference coordinate system for specifying the ply orientations.
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Figure A.18: Specifying the composite layup

Specify the ply layup as follows,

• Choose the Region column heading and select the enter part.
• Choose the Material column heading and select IM7_8552 as shown in Fig. A.19.
• Choose the Thickness column heading and enter 2E-3 (i.e., 2 mm) for ply thickness
• Under Rotation angle enter the orientation of each ply relative to the datum coordinate system

as shown in Fig. A.18. You will notice that as orientation of each ply is specified, the principal
material coordinate system of the ply will be displayed in the Viewport relative to the global
datum coordinate system selected as shown in Fig. A.20.
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Figure A.19: Select ply material

(a) 0◦ ply (b) 90◦ ply

Figure A.20: Orientation of principal material coordinate system relative to the datum reference
coordinate system

Click OK to exit the Edit Composite Layup dialog after you have specified the ply orientations.

You can view the full stacking sequence that you just created to verify the ply orientations by clicking

on the icon in the top toolbar of your screen. A Query window will appear as shown in Fig. A.21.
Click on Ply stack plot and the select the part in the Viewport as the region for which the composite
layup is to be shown. This will display the stacking sequence as shown in Fig. A.21.
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Figure A.21: Stacking sequence visualization

A.5 Module: Assembly

Switch to the Assembly module, to create one instance of the plate you created. Click first on the
icon. Then, fill the Create Instance dialog box that shows, as shown in Fig. A.22, as follows,

• Under the Create instance from: option, choose Parts
• Under Parts, pick the part you created, e.g., Laminated_Plate
• Under Instance Type, choose Independent (mesh or instance)
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Figure A.22: Assembly creation

Click OK to finish creating the instance.

A.6 Module: Step

Switch to the Step module to create an analysis step. In this module, click on the icon. The
Create Step dialog box, shown in Fig. A.23, will appear

• Enter a name for the analysis step, e.g., Static_Analysis
• Under Procedure type: General, choose Static, General for a static analysis run.
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Figure A.23: Create Step dialog box

When you click OK, the Edit Step dialog box will open. Click OK to proceed with the default values.

Abaqus/CAE writes the results of the analysis to the output database (.odb) file. A list of preselected
variables are written by default to the output database. In the case of composite materials, we need
to specify addition variables to obtain the through-thickness variation of stresses and failure index.

Click on the Create Field Output icon to open the Create Field dialog box shown in Fig. A.24.
Complete the dialog box as follows,

• Give a name to the additional field outputs, e.g., Composite_Field_Outputs
• Under Step, select the step you created, e.g., Static_Analysis
• Click Continue....

Figure A.24: Create Field dialog box
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The Edit Field Output Request dialog box will then appear as shown in Fig. A.25. Select the following
options to choose the required field outputs for the laminate analysis,

• Under Domain, choose Composite layup
• In the Output Variables block, select Stresses, Strains and Failure/Fracture to get the corre-

sponding outputs through the thickness.
• In the Output at Section Points block, select All section points in all plies

Figure A.25: Create new field output request

Click OK to exit the field output request dialog box.

A.7 Module: Load

Switch to the Load module to prescribe the loads and boundary conditions.
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A.7.1 Loads

In this problem a point load is applied. In order to create a point load, we need to first define a point in
the geometric domain before we can apply a concentrated load at that point. This is accomplished by
partitioning the geometry. Note that it is better to first partition the geometry before specifying the
boundary conditions since partitioning the plate will segment the boundaries.

Click on the icon in the toolbox area to partition a face. The process to partition the plate is as
follows,

• Select the right vertical edge of the plate to be the vertical right edge in the Sketcher when
partition the face as shown in Fig. A.26(a)

• Click on the icon and draw a vertical line as shown in Fig. A.26(b). Click on the Esc key on
your keyboard after drawing the line. Notice the "V" letter in Fig. A.26(b) stands for Vertical

• Click on the icon to draw the horizontal line of the partition as shown in Fig. A.26(c). Click
on the Esc key on your keyboard after drawing the line. Notice the "H" letter in Fig. A.26(c)
stands for Horizontal

• Dimension your partition by clicking on the icon. Note that the point of intersection of the
two lines will serve as the point of application of the concentrated load. Click on the line and
the edge of the plate you are dimensioning with respect to, enter the dimension and press Enter
on your keyboard after each dimension is entered. Click on the Esc key on your keyboard after
entering both dimensions. The result is shown in Fig. A.26(d). Note that the dimension "0.07"
is actually "0.075" which corresponds to 0/4 but Abaqus has limited default decimal precision
output
• Click on Done on the left of the prompt bar to finish the partition.

The final partitioned plate is shown in Fig. A.26(e).
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(a) Choosing the right view edge to partition (b) Drawing the first line in the partition of the plate

(c) Drawing the second line in the partition of the plate (d) Dimensioning the partition

(e) Final view of the partitioned plate

Figure A.26: Plate partitoning process

To create the point load, click on the and fill the Create Load dialog box as shown in Fig. A.27,

• Give a name to the load to be applied, e.g., Point_Load
• Under Category, choose Mechanical
• Under Types for Selected Step, choose Concentrated force
• Click Continue... on the bottom left of the dialog window
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Figure A.27: Create Load dialog box

In the Viewport, click on the point of intersection of all the partitions of the plate, where the load is to
be applied, as shown in Fig. A.28. Next, click on Done on the left of the prompt bar.

Figure A.28: Selecting the point of application of the concentrated load

The Edit Load dialog box will appear as shown in Fig. A.29. Complete the dialog box as follows,
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• Under CF1 and CF2 enter respectively the G and H components of the load which are both 0
• Under CF3 enter the I component of the load which is −1 (Newtons)

Figure A.29: Concentrated load properties

After finishing the load creation, if you rotate the model using the rotation tool in the menu bar,
you can view the concentrated force as shown in Fig. A.30.

Figure A.30: Module "Load": Final view
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A.7.2 Boundary conditions

To create the S2 boundary conditions on the edges, click on the icon. Complete the Create
Boundary Conditions dialog box, as shown in Fig. A.31,

• Give a name to the boundary condition, e.g., S2_BC_x_0a
• Under Category, choose Mechanical
• Under Types for Selected Step, choose Displacement/Rotation to restrain the appropriate mid-

surface displacements and rotations on the simply supported edges

Figure A.31: (2 boundary conditions creation on the edges G = 0, 0 dialog box

Pick the edges where this boundary condition will be applied as shown in Fig. A.32. Note to select
multiple edges, press and hold the Shift key on your keyboard to select all the edges.

Figure A.32: G = 0, 0 sides selection
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Then, click on Done on the left of the prompt bar. The Edit Boundary Conditions dialog box will
appear as shown in Fig. A.33. Fill the dialog box as follows,

• Select U2 and U3 which represent respectively E0 and F0

• Set the values to 0 since they are restrained in S2 boundary conditions
• Click on OK on the bottom left of the dialog box.

Figure A.33: S2 boundary conditions at G = 0, 0

Repeat the process for the edges H = 0 and H = 1, where *3 = 0 and *1 = 0 (i.e., D0 = 0) instead of
*2 = 0.

A.8 Module: Mesh

Switch to the Mesh module. We note that the Abaqus student edition limits the simulation to a maxi-
mum of 1000 nodes. Therefore, the number of elements is chosen accordingly. In practical applications,
it is important to perform a convergence analysis by increasing the number of elements. This can be
done using the research edition of Abaqus which does not restrict the number of nodes. Since the
purpose of this tutorial is to provide an overview of the modeling process, we will perform the analysis
using a fixed number of nodes.

First, you should choose the element type. Click on the Assign Element Type icon. Next, select
the entire plate when prompted for the region to be assigned an element type and click Done. This
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will open the Element Type dialog box as shown in Fig. A.34 will appear. We will use the default S4R
element (4-node doubly curved thin or thick shell with reduced integration). Click OK and Done.

Figure A.34: Module "Mesh": Element type

You will need to seed the edges of the model to create a mesh. Click on the icon to starting seeding
the edges. Then, select the four edge segments shown in bold red line in Fig. A.35. You can press and
hold the Shift key to select multiple edges. Note that different numbers of seeding points will be used
for the other edge segments which are of different length.
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Figure A.35: Selecting the edges to seed

After selecting the four edge segments to be seeded, click Done on the left of the prompt bar. The Local
Seeds dialog box shown in Fig. A.36 will then appear. Fill the dialog box as follows,

• Under Method, choose By number to seed with numbers of elements instead of sizes of elements
• For Number of elements, we recommend entering 15 to get 15 elements along each of the chosen

edges
• Click OK on the bottom left of the dialog box.
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Figure A.36: Edge seeding dialog box

This process is repeated for the other four edge segments corresponding to H = 0 and H = 1. We
recommend 7 elements for the shorter edge segments that extend from G = 0 to 0/4 and 21 elements for
the longer edges from G = 0/4 to 0. Click Done after seeding all the edges.

Next, to make sure the mesh is structured, i.e., the mid-point of the plate corresponds to a node for

example, click on the Assign Mesh Controls icon. Then, select the whole plate, i.e., all partitions,
and press Enter on your keyboard. The dialog box shown in Fig. A.37 will appear. Fill the dialog box
as follows,

• Under Element Shape, choose Quad so that your mesh is exclusively quadrilateral elements
• Under Technique, choose Structured to obtain a structured mesh with elements arranged in a

regular grid

Figure A.37: Finite element mesh controls
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Finally, click on the Mesh Part Instance icon in the toolbox area and click OK when prompted to
mesh the part instance. The instance is then meshed, and the result should look similar to the mesh
shown in Fig. A.38 if the same number of edge seeds were used.

Figure A.38: Finite element mesh consisting of four-noded elements

A.9 Module: Job

Switch to the Job module to create an analysis job to perform the simulation. Click on the icon
in the toolbar area to open the Create Job dialog box. Enter a name for the job, e.g., Laminate_Job, as
shown in Fig. A.39 and click Continue... on the bottom left of the dialog box. This will open the Edit
Job dialog box. Click OK to proceed with the default options.
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Figure A.39: Job creation

To submit the job, click on the icon in the toolbar area to open the Job Manager dialog box shown
in Fig. A.40. Choose the job and click on Submit to perform the finite element analysis.

Figure A.40: Job submission

After the run Status shows Completed, click on Results to view the results.

A.10 Module: Visualization

Now that we have performed the analysis, we can postprocess the data and visualize the results. The
meshed plate, shown in Fig. A.41, will appear at first.
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Figure A.41: Visualization module initial view

A.10.1 Displacements

In order to plot the deformed configuration, click on the Plot Contours on Deformed Shape icon.
Then, to specifically view the vertical displacement, i.e., U3 in Abaqus, go to the context bar, choose U
and U3 to visualize the vertical displacements, shown in Fig. A.42. It can be seen that the maximum
deflection is −6.637 × 10−4 m. The deformed shape of the plate is shown as well.

Figure A.42: Module "Visualization": Deflection*3
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A.10.2 Probing for values

To be able to extract the displacement value at a specific point, you need to probe the value. If the
vertical displacement of the middle of the plate is to be determined for example, go to the menu bar,
under Tools → Query, the dialog box shown in Fig. A.43 appears.

Figure A.43: Query dialog box

In this dialog box, click on Probe values to be able to pick nodes with your cursor on the plate geometry
and get their properties. After clicking on Probe values, another dialog box, shown in Fig. A.44, will
appear. Under Probe, choose Nodes to probe nodal values.
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Figure A.44: Probing for values dialog box

As you move your cursor on the plate, the node properties of the node corresponding to your current
cursor position will show in the Probe Values dialog box. If you click on a node, i.e., select a node, its
properties will be fixed as shown in Fig. A.44. Each column corresponds to a property of the node as
follows,

• Node ID represents the node number in the mesh created by Abaqus
• Orig. Coords represents the undeformed, i.e., original, coordinates of the node
• Def. Coords represents the coordinates of the node after deformation
• Attached elements represents the element numbers, i.e., ID’s, of the elements connected to this

node
• U, U3 represents the vertical displacement of the node

Note that U, U3 was a part of the probe values because it was selected earlier in the context bar as
shown in Fig. A.42. The variable you choose in the context bar will appear as a column in the Probe
Values dialog box. It can be seen in Fig. A.44 that the vertical displacement at the middle of the plate is
of −0.000591554 m or 0.000591554 m downwards.
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A.10.3 Stresses

To plot the stresses, go to the context bar and change U and U3 to S and S11. Note that S11 corresponds
to f1 in the material coordinate system and S22 corresponds to f2 in the material coordinate system.
The stress depends on the through-thickness location of a point, i.e., the I coordinate. To choose where
you want the stress plot, go to the menu bar under Results → Section Points. The dialog box shown
in Fig. A.45 appears. Under Selection method choose Plies to pick stress plotting locations based on
the plies.

Figure A.45: Dialog box to choose the stress location to plot

To plot the stress at the top of the first ply, select the following in the dialog box shown in Fig. A.45,

• Choose PLY-1
• Under Ply result location, choose Topmost

The result is shown in Fig. A.46
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Figure A.46: Stress S11 variation on the top surface of the first ply in the laminate

Note if you choose under Ply result location the option Topmost and bottommost, the result will
show a plate where the contour on the top surface corresponds to the distribution of S11 on the top
surface of the corresponding ply and the bottom side contour corresponds to the stress distribution on
the bottom surface of the ply.

A.10.4 Through-thickness plots

To plot the through thickness variation of a parameter at a certain point, go to the menu bar, then go
under Tools → xy Data → Create.... The Create XY Data dialog box shown on the left of Fig. A.47,
will appear.

• Under Source, choose Thickness which means you want the through thickness plots
• Click on Continue... at the bottom left of the dialog box

The XY Data From Shell Thickness dialog box will appear. Under the tab Variables, check the
following,

• Under Position, choose Element Nodal, to pick a location by specifying a corresponding element
ID of an element connected to the node at this location
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• Under Click checkboxes or edit the identifiers shown next to Edit below., check S11 for f1,
and later TSAIW: Tsai-Wu failure measure for the Tsai-Wu failure index

Since the middle of the plate is defined by a node of ID 56, Fig. A.44, and one of the elements connected
to it has an ID of 210, under the Elements tab of the XY Data From Shell Thickness dialog box shown
in Fig. A.47,

• Go to the Elements portion
• Under Method, choose Element labels to choose the location by the label of an element connected

to the node at the location
• Under Element labels, enter the element ID of an element connected to the node located at the

middle of the plate, e.g., 210
• Click on Plot at the middle of the bottom of the dialog box

Figure A.47: Steps to plot the through thickness variation of S11

Figure A.48 shows the result of the plot. As it can be seen there are four superimposed plots each
corresponding to a node of element 210. To see only the curve corresponding to the mid-point, we
need to delete the other three curves.
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Figure A.48: S11 plots corresponding to the four nodes attached to element 210

To delete the curves that are not needed, go to the menu bar under Tools → xy Data → Manage, then
the window shown in Fig. A.49 will appear.

• Select, as shown, the XY data not corresponding to the mid-point, i.e., curves for the other three
nodes in element 210 that are not node 56
• Click on Delete...
• In the dialog box that shows up, click on Yes
• Close XY Data Manager dialog box

Figure A.49: Deleting the plots at the nodes connected to element 210, other than node 56
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Figure A.50: Through-thickness variation of the stress component S11 at the center of the plate

In Abaqus, the failure index ' is defined as the scaling factor such that, for a given stress state
{f1,f2, g12},

6

(f1

'
,
f2

'
,
g12

'

)
= 1 (A.2)

where 6(f1,f2, g12) is defined in (2.41). Note that the scaling factor 1/' multiplies all of the stress
components simultaneously such that the resulting stress state lies on the failure envelope. If the failure
index ' < 1, then the stress state lies within the failure envelope. Values of ' ≥ 1 indicate failure.

By definition, the failure index ' is the reciprocal of the safety factor ( 5 0, i.e,

' =
1
( 5 0

(A.3)

The through-thickness variation of the Tsai-Wu failure index ' can be plotted using a process similar
to that for the stresses as shown in Fig. A.51

Figure A.51: Steps to plot the through thickness variation of the Tsai-Wu failure index
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After deleting the additional curves at the other nodes of element 210, we obtain the through-thickness
variation shown in Fig. A.52.

Figure A.52: Through-thickness variation of the Tsai-Wu failure index at the middle of the laminated
plate

The Tsai-Wu theory predicts that the laminated plate will not fail since ' < 1 throughout.



B
Matlab Code for Laminated Composite Structures

B.1 Material Properties

Unidirectional carbon fiber-reinforced composite

function [E1,nu12,E2,G12,F1t,F1c,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties

% Assigns material properties in the principal material directions

%

% Syntax:

% E1,nu12,E2,G12,F1t,F1c,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties

%

% Inputs: None

%

% Output:

% E1 - Young’s modulus in the 1-direction

% nu12 - major Poisson’s ratio

% E2 - Young’s modulus in the 2-direction

% G12 - inplane shear modulus

% F1t - The tensile strength in the 1-material direction

% F1c - The compressive strength in the 1-material direction

% F2t - The tensile strength in the 2-material direction

% F2c - The compressive strength in the 2-material direction

% F6 - The shear strength in the 1-2 material plane

% Note 1 and 2 are the principal material directions.

% Typically E1,E2,G12,F1t,F2t,F2t, F2c and F6 are specified in SI units of Pa.

%

% Author: Senthil S. Vel, University of Maine

%

% See also ReducedStiffness, ReducedCompliance, OffAxisStiffness, OffAxisCompliance.

% Representative elastic properties of an IM7/8552 unidireciontal

% fiber-reinforced carbon fiber composite

% The Young’s moduli and shear moduli are in Pa
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E1 = 167.4e9;

nu12 = 0.30;

E2 = 10.3e9;

G12 = 6.4e9;

% Representative strengths of a lamina in Pa

F1t = 2723e6;

F1c = 1689e6;

F2t = 64.1e6;

F2c = 199.8e6;

F6 = 92.3e6;

% Density in kg/m^3

rho = 1588;

% Ply thickness in meters

h = 0.2e-3;

% Print lamina properties

fprintf(’Elastic moduli of the composite material: \n’)

fprintf(’ E1 = %g GPa \n’,E1/1e9)

fprintf(’ nu12 = %g \n’,nu12)

fprintf(’ E2 = %g GPa \n’,E2/1e9)

fprintf(’ G12 = %g GPa \n’,G12/1e9)

fprintf(’Strengths of the composite material: \n’)

fprintf(’ F1t = %g MPa \n’,F1t/1e6)

fprintf(’ F1c = %g MPa \n’,F1c/1e6)

fprintf(’ F2t = %g MPa \n’,F2t/1e6)

fprintf(’ F2c= %g MPa \n’,F2c/1e6)

fprintf(’ F6 = %g MPa \n’,F6/1e6)

fprintf(’Density: \n’)

fprintf(’ rho = %g kg/m^3 \n’,rho)

fprintf(’Ply thickness: \n’)

fprintf(’ h = %g mm \n\n’,h/1e-3)
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B.2 Lamina Functions

Reduced stiffness matrix [&]

function Q = ReducedStiffness(E1,nu12,E2,G12)

% ReducedStiffness calculates the plane stress reduced elastic

% stiffness matrix [Q] for a composite lamina.

%

% Syntax:

% Q = ReducedStiffness(E1,nu12,E2,G12)

%

% Inputs:

% E1 - Young’s modulus in the 1-direction

% nu12 - major Poisson’s ratio

% E2 - Young’s modulus in the 2-direction

% G12 - inplane shear modulus

% Note 1 and 2 are the principal material directions.

% Typically E1, E2 and G12 are specified in SI units of Pa.

%

% Output:

% Q - 3x3 reduced stiffness matrix for a composite lamina

%

% Author: Senthil S. Vel, University of Maine

%

% See also ReducedCompliance, OffAxisStiffness, OffAxisCompliance.

% Calculate the minor Poisson’s ratio using the reciprocal relations

nu21 = nu12*E2/E1;

% Evaluate the elements of the reduced stiffness matrix

Q11 = E1/(1-nu12*nu21);

Q12 = nu12*E2/(1-nu12*nu21);

Q22 = E2/(1-nu12*nu21);

Q66 = G12;

% Arrange the elements to form the reduced stiffness matrix [Q]

Q = [Q11 Q12 0;

Q12 Q22 0;

0 0 Q66];

end
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Reduced compliance matrix [(]

function S = ReducedCompliance(E1,nu12,E2,G12)

% ReducedCompliance calculates the plane stress reduced elastic

% compliance matrix [S] for a composite lamina.

%

% Syntax:

% S = ReducedCompliance(E1,nu12,E2,G12)

%

% Inputs:

% E1 - Young’s modulus in the 1-direction

% nu12 - major Poisson’s ratio

% E2 - Young’s modulus in the 2-direction

% G12 - inplane shear modulus

% Note 1 and 2 are the principal material directions.

% Typically E1, E2 and G12 are specified in SI units of Pa.

%

% Output:

% S - 3x3 reduced complaince matrix for a composite lamina.

%

% Author: Senthil S. Vel, University of Maine

%

% See also ReducedStiffness, OffAxisStiffness, OffAxisCompliance.

% Evaluate the elements of the reduced compliance matrix

S11 = 1/E1;

S12 = -nu12/E1;

S22 = 1/E2;

S66 = 1/G12;

% Arrange the elements to form the reduced compliance matrix [S]

S = [S11 S12 0;

S12 S22 0;

0 0 S66];

end

Off-axis stiffness matrix [&̄]

function QBar = OffAxisStiffness(Q,Theta)

% OffAxisStiffness calculates the plane stress reduced elastic

% stiffness matrix [QBar] for an off-axis composite lamina.

%
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% Syntax:

% QBar = OffAxisStiffness(Q,Theta)

%

% Inputs:

% Q - 3x3 plane-stress reduced stiffness matrix for a composite lamina

% Theta - Angle in degrees from the x-axis to the 1-axis (CCW positive)

%

% Output:

% QBar - 3x3 reduced stiffness matrix for an off-axis lamina

%

% Author: Senthil S. Vel, University of Maine

%

% See also ReducedCompliance, ReducedStiffness, OffAxisCompliance.

% Cosine and Sine of the angle

m = cosd(Theta);

n = sind(Theta);

% 2D reduced stiffness matrix (Q) values extraction

Q11 = Q(1,1); Q12 = Q(1,2); Q22 = Q(2,2); Q66 = Q(3,3);

% Calculate the off-axis stiffnesses QBar

QBar11 = Q11*m^4+2*(Q12+2*Q66)*m^2*n^2+Q22*n^4;

QBar12 = (Q11+Q22-4*Q66)*m^2*n^2+Q12*(m^4+n^4);

QBar16 = (Q11-Q12-2*Q66)*n*m^3+(Q12-Q22+2*Q66)*n^3*m;

QBar22 = Q11*n^4+2*(Q12+2*Q66)*n^2*m^2+Q22*m^4;

QBar26 = (Q11-Q12-2*Q66)*n^3*m+(Q12-Q22+2*Q66)*n*m^3;

QBar66 = (Q11+Q22-2*Q12-2*Q66)*n^2*m^2+Q66*(n^4+m^4);

% Assemble the QBar matrix

QBar =[QBar11 QBar12 QBar16;

QBar12 QBar22 QBar26;

QBar16 QBar26 QBar66];

end

Off-axis compliance matrix [(̄]

function SBar = OffAxisCompliance(S,Theta)

% OffAxisCompliance calculates the plane stress reduced elastic

% compliance matrix [SBar] for an off-axis composite lamina.

%

% Syntax:

% SBar = OffAxisCompliance(S,Theta)
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%

% Inputs:

% S - 3x3 plane-stress reduced compliance matrix for a composite lamina

% Theta - Angle in degrees from the x-axis to the 1-axis (CCW positive)

%

% Output:

% SBar - 3x3 reduced complaince matrix for an off-axis lamina

%

% Author: Senthil S. Vel, University of Maine

%

% See also ReducedCompliance, ReducedStiffness, OffAxisStiffness.

% Cosine and Sine of the angle

m = cosd(Theta);

n = sind(Theta);

% 2D reduced compliance matrix (S) values extraction

S11 = S(1,1); S12 = S(1,2); S22 = S(2,2); S66 = S(3,3);

% Calculate the off-axis compliances SBar

SBar11 = S11*m^4+(2*S12+S66)*m^2*n^2+S22*n^4;

SBar12 = (S11+S22-S66)*m^2*n^2+S12*(m^4+n^4);

SBar16 = (2*S11-2*S12-S66)*n*m^3+(2*S12-2*S22+S66)*n^3*m;

SBar22 = S11*n^4+(2*S12+S66)*n^2*m^2+S22*m^4;

SBar26 = (2*S11-2*S12-S66)*n^3*m+(2*S12-2*S22+S66)*n*m^3;

SBar66 = 2*(2*S11+2*S22-4*S12-S66)*n^2*m^2+S66*(n^4+m^4);

% Assemble the SBar matrix

SBar =[SBar11 SBar12 SBar16;

SBar12 SBar22 SBar26;

SBar16 SBar26 SBar66];

end

Stress transformation matrix [)f]

function Ts=StressTransformationMatrix(Theta)

% StressTransformationMatrix computes the 2D stress coordinate

% transformation matrix based on the Voigt notation (T_sigma)

%

% Syntax:

% Ts = StressTransformationMatrix(Theta)

%

% Inputs:
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% Theta - Rotation angle in degrees

%

% Output:

% Ts - 3x3 2D stress coordinate transformation matrix

% (based on the Voigt notation)

%

% Author: Senthil S. Vel, University of Maine

%

% See also InverseStressTransformationMatrix, StrainTransformationMatrix,

InverseStrainTransformationMatrix

% Cosine and Sine of the angle

m = cosd(Theta);

n = sind(Theta);

% Stress transformation matrix T_sigma

Ts =[ m^2 n^2 2*m*n;

n^2 m^2 -2*m*n;

-m*n m*n m^2-n^2];

end

Strain transformation matrix [)Y]

function Te=StrainTransformationMatrix(Theta)

% StrainTransformationMatrix computes the 2D strain coordinate

% transformation matrix based on the Voigt notation (T_epsilon)

%

% Syntax:

% Te = StrainTransformationMatrix(Theta)

%

% Inputs:

% Theta - Rotation angle in degrees

%

% Output:

% Te - 3x3 2D strain coordinate transformation matrix

% (based on the Voigt notation)

%

% Author: Senthil S. Vel, University of Maine

%

% See also InverseStressTransformationMatrix, StressTransformationMatrix,

InverseStrainTransformationMatrix

% Cosine and Sine of the angle
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m = cosd(Theta);

n = sind(Theta);

% Strain transformation matrix T_epsilon

Te =[ m^2 n^2 m*n;

n^2 m^2 -m*n;

-2*m*n 2*m*n m^2-n^2 ];

end

Inverse stress transformation matrix [)f]−1

function [Tsinv]=InverseStressTransformationMatrix(Theta)

% InverseStressTransformationMatrix computes the inverse of the

% 2D stress coordinate transformation matrix based on the

% Voigt notation (T_sigma)

%

% Syntax:

% Tsinv = InverseStressTransformationMatrix(Theta)

%

% Inputs:

% Theta - Rotation angle in degrees

%

% Output:

% Tsinv - 3x3 inverse of the 2D stress coordinate transformation matrix

% (for the Voigt notation case)

%

% Author: Senthil S. Vel, University of Maine

%

% See also StrainTransformationMatrix, StressTransformationMatrix,

InverseStrainTransformationMatrix

% Cosine and Sine of the angle

m = cosd(Theta);

n = sind(Theta);

% Inverse of the stress transformation matrix

Tsinv =[m^2 n^2 -2*m*n;

n^2 m^2 2*m*n;

m*n -m*n m^2-n^2];

end
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Inverse strain transformation matrix [)Y]−1

function [Teinv]=InverseStrainTransformationMatrix(Theta)

% InverseStrainTransformationMatrix computes the inverse of the

% 2D strain coordinate transformation matrix based on the

% Voigt notation (T_epsilon)

%

% Syntax:

% Teinv = InverseStrainTransformationMatrix(Theta)

%

% Inputs:

% Theta - Rotation angle in degrees

%

% Output:

% Teinv - 3x3 inverse of the 2D strain coordinate transformation matrix

% (for the Voigt notation case)

%

% Author: Senthil S. Vel, University of Maine

%

% See also StrainTransformationMatrix, StressTransformationMatrix,

InverseStressTransformationMatrix

% Cosine and Sine of the angle

m = cosd(Theta);

n = sind(Theta);

% Inverse of the strain transformation matrix

Teinv =[m^2 n^2 -m*n;

n^2 m^2 m*n;

2*m*n -2*m*n m^2-n^2];

end

Lamina engineering properties

function [Ex,nuxy,Ey,Gxy] = LaminaEngProperties(E1,nu12,E2,G12,Theta)

% LaminaEngProperties calculates engineering properties for an off-axis lamina

%

% Syntax:

% [Ex,nuxy,Ey,Gxy] = LaminaEngProperties(E1,nu12,E2,G12,Theta)

%

% Inputs:

% E1 - Young’s modulus in the 1-direction



B Matlab Code for Laminated Composite Structures 212

% nu12 - major Poisson’s ratio

% E2 - Young’s modulus in the 2-direction

% G12 - inplane shear modulus

% Theta - Angle in degrees from the x-axis to the 1-axis (CCW positive)

% Note 1 and 2 are the principal material directions.

% Typically E1, E2 and G12 are specified in SI units of Pa.

%

% Output:

% Ex - Young’s modulus in the x-direction

% nuxy - Poisson’s ratio of an off-axis lamina

% Ey - Young’s modulus in the y-direction

% Gxy - in-plane shear modulus of an off-axis lamina

%

% Author: Senthil S. Vel, University of Maine

%

% See also ReducedCompliance, ReducedStiffness, OffAxisCompliance, OffAxisStiffness

% Calculate the reduced compliance matrix S

S = ReducedCompliance(E1,nu12,E2,G12);

% Calculate the off-axis reduced compliance matrix SBar

SBar = OffAxisCompliance(S,Theta);

SBar11 = SBar(1,1);

SBar12 = SBar(1,2);

SBar22 = SBar(2,2);

SBar66 = SBar(3,3);

% Calculate the effective engineering properties of an off-axis lamina

Ex = 1/SBar11;

Ey = 1/SBar22;

nuxy = -SBar12/SBar11;

Gxy = 1/SBar66;

end

Tsai-Wu failure theory

function [Sfa, Sfr]=TsaiWu(F1t,F1c,F2t,F2c,F6,Stresses12)

% TsaiWu computes the factor of safety for a state of stress (Sfa)

% and for the reversed-in-sign state of stress (Sfr) based on the

% Tsai-Wu failure theory

%

% Syntax:

% [Sfa, Sfr] = TsaiWu(F1t,F1c,F2t,F2c,F6,Stresses12)
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%

% Inputs:

% F1t - The tensile strength in the 1-material direction

% F1c - The compressive strength in the 1-material direction

% F2t - The tensile strength in the 2-material direction

% F2c - The compressive strength in the 2-material direction

% F6 - The shear strength in the 1-2 material plane

% Stresses12 - State of stress, vector input.

% Stresses12 = [sigma_1 sigma_2 tau_12]’.

%

% NOTE: Consistency with the units of the strength values and the stress state

% is required for meaningful results.

%

% Output:

% Sfa - factor of safety for the state of stress Stresses12

% Sfr - factor of safety for the reversed-in-sign equivalent state of stress Stresses12

%

% Author: Senthil S. Vel, University of Maine

%

% See also StressTransformationMatrix, LaminaEngProperties

% Stress components

sigma1 = Stresses12(1);

sigma2 = Stresses12(2);

tau12 = Stresses12(3);

% Calculate the Tsai-Wu coefficients

f1 = 1/F1t-1/F1c;

f11 = 1/(F1t*F1c);

f2 = 1/F2t-1/F2c;

f22 = 1/(F2t*F2c);

f66 = 1/(F6^2);

% Determine the coefficients a and b

a = f11*sigma1^2+f22*sigma2^2+f66*tau12^2-sqrt(f11*f22)*sigma1*sigma2;

b = f1*sigma1+f2*sigma2;

% Determine the factor of safety for actual state of stress

Sfa=(-b+sqrt(b^2+4*a))/(2*a);

% Determine the factor of safety for reversed-in-sign state of stress

Sfr= (-b-sqrt(b^2+4*a))/(2*a);

end
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B.3 Laminate Functions

Laminate ABD matrix

function [A,B,D,ABD,a,b,d,abd]=LaminateABD(N,QBarArray,ZArray)

% LaminateABD computes the [A], [B], [D] and [ABD] matrices of a laminate.

% In addition, it computes the [a], [b], [d] and [abd] matrices where [abd] is

% the inverse of [ABD].

%

% Syntax:

% [A,B,D,ABD,a,b,d,abd] = LaminateABD(N,QBarArray,ZArray)

%

% Inputs:

% N - Number of layers in the laminate

% QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

% stiffnesses of the kth layer of the laminate

% ZArray - Array of interface z-coordinates of a laminate

%

% Output:

% A - [A] matrix (3x3)

% B - [B] matrix (3x3)

% D - [D] matrix (3x3)

% ABD - [ABD] matrix (6x6)

% a - [a] matrix (3x3)

% b - [b] matrix (3x3)

% d - [d] matrix (3x3)

% abd - [abd] matrix, inverse of ABD (6x6)

%

% Author: Senthil S. Vel, University of Maine

%

% See also LaminateStrainsXY, LaminateStressesXY, LaminateEngineeringProperties.

% Initialize the A, B and D matrices

A=zeros(3,3);

B=zeros(3,3);

D=zeros(3,3);

% Perform layer by layer summation to obtain the A, B and D matrices

for k = 1:N

A = A + (ZArray(k+1)-ZArray(k))*QBarArray{k};

B = B + (1/2)*((ZArray(k+1))^2-(ZArray(k))^2)*QBarArray{k};

D = D + (1/3)*((ZArray(k+1))^3-(ZArray(k))^3)*QBarArray{k};

end
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% Arrange the A, B and D into a 6x6 ABD matrix

ABD = [A B; B D];

% Find the inverse of the ABD matrix

abd = inv(ABD);

a = abd(1:3,1:3);

b = abd(1:3,4:6);

c = abd(4:6,1:3);

d = abd(4:6,4:6);

end

Midsurface strains and curvatures

function [Epsilon0,Kappa] = MidsurfaceStrainsCurvatures(abd,Nx,Ny,Nxy,Mx,My,Mxy)

% MidsurfaceStrainsCurvatures computes the mid-surface strains and curvatures

% of a lamina under loads Nx, Ny and Nxy and moments Mx, My and Mxy based on

% the load-deformation relations: [epsilon,kappa] = [abd] [N,M].

%

% Syntax:

% [Epsilon0,Kappa] = MidsurfaceStrainsCurvatures(abd,Nx,Ny,Nxy,Mx,My,Mxy)

%

% Inputs:

% abd - [abd] matrix (i.e. inverse of [ABD]), could be computed using LaminateABD

% Nx - x-direction axial load (force)

% Ny - y-direction axial load (force)

% Nxy - xy-plane shear load (force)

% Mx - Bending moment about the x-axis

% My - Bending moment about the y-axis

% Mxy - Twisting moment

%

% Output:

% Epsilon0 - Computed mid-surface strain of the laminate

% Kappa - Computed mid-surface curvature of the laminate

%

% Author: Senthil S. Vel, University of Maine

%

% See also LaminateABD, LaminateStrainsXY, LaminateStressesXY.

% Create a column array of forces and moments

NM = [Nx Ny Nxy Mx My Mxy]’;

% Determine the midsurface strains and curvatures array

EpsilonKappaArray = abd*NM;
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% Extract the midsurface strains and curvatures

Epsilon0 = EpsilonKappaArray(1:3,1);

Kappa = EpsilonKappaArray(4:6,1);

end

Determine the layer number given the I-coordinate

function LayerNumber = WhichLayer(N,ZArray,z)

% LayerNumber determines to which layer of the laminate a point

% with a specified z coordinate belongs

%

% Syntax:

% LayerNumber = WhichLayer(N,ZArray,z)

%

% Inputs:

% N - Number of layers in the laminate

% ZArray - Array of interface z coordinates

% z - thickness coordinate of the location for which the layer number

% is to be determined

%

% Output:

% LayerNumber - The layer to which point z belongs to

%

% Author: Senthil S. Vel, University of Maine

%

% See also LaminateABD, LaminateStrainsXY, LaminateEngineeringProperties, LaminateStressesXY.

% Check layer by layer to see if ZArray(k) <= z <= ZArray(k+1)

for k = 1:N

if (z >= ZArray(k)) & (z <= ZArray(k+1))

LayerNumber = k; % assign layer number if ZCoord(k) <= z <= ZCoord(k+1);

end

end

end

Laminate strains

function StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z)

% LaminateStrainsXY computes, for a given mid-surface strain vector
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% and mid-surface curvatures vector, the strains at a specified location

% (or through-thickness coordinate) z.

%

% Syntax:

% StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z)

%

% Inputs:

% Epsilon0 - A 3x1 vector of mid-surface strains

% Kappa - A 3x1 vector of mid-surface curvatures

% z - z-coordinate of the location for calculating the x-y strains

%

% Output:

% StrainsXY - A 3x1 array of strains in the x-y (global) coordinate system

%

% Author: Senthil S. Vel, University of Maine

%

% See also LaminateABD, LaminateStressesXY, LaminateEngineeringProperties.

% Compute the strains based on the Kirchhoff assumptions

StrainsXY = Epsilon0+z*Kappa;

end

Laminate stresses

function StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,z)

% LaminateStressesXY computes, for a given mid-surface strain vector

% and mid-surface curvatures vector, the stresses at a specified location

% (or through-thickness coordinate) z.

%

% Syntax:

% StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,z)

%

% Inputs:

% QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

% stiffnesses of the kth layer of the laminate

% ZCoord - Array of interface locations, i.e., the beginning of each

% layer of the laminate

% Epsilon0 - A 3x1 vector of mid-surface strains

% Kappa - A 3x1 vector of mid-surface curvatures

% z - z-coordinate of the location for calculating the x-y stresses

%

% Output:

% StressesXY - A 3x1 array of stresses in the x-y (global) coordinate system
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%

% Author: Senthil S. Vel, University of Maine

%

% See also LaminateABD, LaminateStrainsXY, LaminateEngineeringProperties, WhichLayer.

% Determine the number of layers from the length of the QBar array

N = length(QBarArray);

% Determine which layer the z coordinate belongs to

k = WhichLayer(N,ZArray,z); % layer number

% Determine the strains at the specified z location

StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z);

% Stresses in the x-y coordinate system

StressesXY = QBarArray{k}*StrainsXY;

end

Plot laminate strains

function PlotLaminateStrains(ComponentStr,ThetaArray,ZArray,Epsilon0,Kappa,H)

% PlotLaminateStrains plots the through-the-thickness variation

% (i.e. as a function of z) of a specifiec strain component in the laminate

%

% Syntax:

% PlotLaminateStrains(ComponentStr,ThetaArray,ZArray,Epsilon0,Kappa,H)

%

% Inputs:

% ComponentStr - Strain component to be plotted, takes one of the following

% character array values:

% in the golbal/structural coordinate system: ’ex’, ’ey’, ’gammaxy’

% in the principal/material coordiante system: ’e1’, ’e2’, ’gamma12’

% ThetaArray - Nx1 vector of layer by layer fiber orientations, where N

% is the number of layers in the laminate.

% ZArray - Array of interface z-coordinates of a laminate

% Epsilon0 - Mid-surface strains of the laminate

% Kappa - Mid-surface curvatures of the laminate

% H - Total height, i.e. thickness, of the laminate

%

% Output:

% No outputs for this function (except the plot outputs as figures)

%

% Author: Senthil S. Vel, University of Maine
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%

% See also LaminateStrainsXY, PlotLaminateStresses, PlotLaminateTsaiWuSfa .

% Read global plot parameters

global LineThickness

% Determine the number of layers from the ThetaArray

N = length(ThetaArray);

% Specify the number of sampling points per layer for the plots

PointsPerLayer = 2;

switch ComponentStr

case ’ex’

CoordinateSystem =’XY’;

Component = 1;

xstr = ’Normal strain $\varepsilon_{\textit{x}}$ ($\mu \varepsilon$)’;

FigName = ’Normal strain e_x’;

case ’ey’

CoordinateSystem =’XY’;

Component = 2;

xstr = ’Normal strain $\varepsilon_{\textit{y}}$ ($\mu \varepsilon$)’;

FigName = ’Normal strain e_y’;

case ’gammaxy’

CoordinateSystem =’XY’;

Component = 3;

xstr = ’Shear strain $\gamma_{\textit{xy}}$ ($\mu$rad)’;

FigName = ’Shear strain gamma_xy’;

case ’e1’

CoordinateSystem =’12’;

Component = 1;

xstr = ’Normal strain $\varepsilon_{1}$ ($\mu \varepsilon$)’;

FigName = ’Normal strain e_1’;

case ’e2’

CoordinateSystem =’12’;

Component = 2;

xstr = ’Normal strain $\varepsilon_{2}$ ($\mu \varepsilon$)’;

FigName = ’Normal strain e_2’;

case ’gamma12’

CoordinateSystem =’12’;

Component = 3;

xstr = ’Shear strain $\gamma_{12}$ ($\mu$rad)’;

FigName = ’Shear strain gamma_12’;

end
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% Prepare the figure

figure(’Name’,FigName);

clf;

hold on;

for k = 1:N

zloc = linspace(ZArray(k),ZArray(k+1),PointsPerLayer);

% Evaluate the strains at the sampling points

for n = 1: PointsPerLayer

switch CoordinateSystem

case ’XY’

% Evaluate strains in the XY coordinate system

StrainColumnArray = LaminateStrainsXY(Epsilon0,Kappa,zloc(n));

case ’12’

% Evaluate strains in the XY coordinate system

StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,zloc(n));

% Transform strains to the 1-2 coordinate system

Te=StrainTransformationMatrix(ThetaArray(k));

StrainColumnArray = Te*StrainsXY;

end

% Extract the strain component of interest

Strain(n) = StrainColumnArray(Component);

end

% plot the strain variation in layer k

plot(Strain/1e-6,zloc/H,’k-’,’LineWidth’,LineThickness,’LineJoin’,’round’);

end

% Insert axes labels

xlabel(xstr,’Interpreter’,’latex’);

ylabel(’$z/H$’,’Interpreter’,’latex’);

% Format the laminate plot

FormatLaminatePlot(ZArray)

end

Plot laminate stresses

function PlotLaminateStresses(ComponentStr,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

% PlotLaminateStressess plots the through-the-thickness variation

% (i.e. as a function of z) of a specifiec stress component in the laminate
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%

% Syntax:

% PlotLaminateStresses(ComponentStr,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

%

% Inputs:

% ComponentStr - Stress component to be plotted, takes one of the following

% character array values:

% in the golbal/structural coordinate system: ’sx’, ’sy’, ’tauxy’

% in the principal/material coordiante system: ’s1’, ’s2’, ’tau12’

% ThetaArray - Nx1 vector of layer fiber orientations, where N is the number

% of layers in the laminate.

% QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

% stiffnesses of the kth layer of the laminate

% ZArray - Array of interface z-coordinates of a laminate

% Epsilon0 - Mid-surface strains of the laminate

% Kappa - Mid-surface curvatures of the laminate

% H - Total height, i.e. thickness, of the laminate

%

% Output:

% No outputs for this function (except the plot outputs as figures)

%

% Author: Senthil S. Vel, University of Maine

%

% See also LaminateStressesXY, PlotLaminateStrains, PlotLaminateTsaiWuSfr .

% Read global plot parameters

global LineThickness

% Determine the number of layers from the ZArray

N = length(QBarArray);

% Specify the number of sampling points per layer for the plots

PointsPerLayer = 2;

switch ComponentStr

case ’sx’

CoordinateSystem =’XY’;

Component = 1;

xstr = ’Normal stress $\sigma_{\textit{x}}$ (MPa)’;

FigName = ’Normal stress sigma_x’;

case ’sy’

CoordinateSystem =’XY’;

Component = 2;

xstr = ’Normal stress $\sigma_{\textit{y}}$ (MPa)’;

FigName = ’Normal stress sigma_y’;
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case ’tauxy’

CoordinateSystem =’XY’;

Component = 3;

xstr = ’Shear stress $\tau_{\textit{xy}}$ (MPa)’;

FigName = ’Shear stress tau_xy’;

case ’s1’

CoordinateSystem =’12’;

Component = 1;

xstr = ’Normal stress $\sigma_{1}$ (MPa)’;

FigName = ’Normal stress sigma_1’;

case ’s2’

CoordinateSystem =’12’;

Component = 2;

xstr = ’Normal stress $\sigma_{2}$ (MPa)’;

FigName = ’Normal stress sigma_2’;

case ’tau12’

CoordinateSystem =’12’;

Component = 3;

xstr = ’Shear stress $\tau_{12}$ (MPa)’;

FigName = ’Shear stress tau_12’;

end

% Clear figure and hold while plotting

figure(’Name’,FigName);

clf;

hold on;

for k = 1:N

% Sample points from Z(k)-eps to Z(k+1)+eps. The eps is used to

% avoid ambiguity of which layer the interface belongs to. Use a very

% small value for the parameter eps to ensure points close to the

% interfaces are included in the plots

zloc = linspace(ZArray(k)+eps,ZArray(k+1)-eps,PointsPerLayer);

% Evaluate the stresses at the sampling points

for n = 1: PointsPerLayer

switch CoordinateSystem

case ’XY’

% Evaluate stresses in the XY coordinate system

StressColumnArray = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,zloc(n));

case ’12’

% Evaluate stresses in the XY coordinate system

StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,zloc(n));

% Transform stresses to the 1-2 coordinate system

Ts=StressTransformationMatrix(ThetaArray(k));
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StressColumnArray = Ts*StressesXY;

end

% Extract the stress component of interest

Stress(n) = StressColumnArray(Component);

end

% plot the stress variation in layer k

hp = plot(Stress/1e6,zloc/H,’k-’,’LineWidth’,LineThickness,’LineJoin’,’round’);

end

% Insert axes labels

xlabel(xstr,’Interpreter’,’latex’);

ylabel(’$z/H$’,’Interpreter’,’latex’);

% Format the laminate plot

FormatLaminatePlot(ZArray)

end

Plot Tsai-Wu safety factor ( 5 0

function [SfaMin,kmin,zmin] = PlotLaminateTsaiWuSfa(F1t,F1c,F2t,F2c,F6,ThetaArray,QBarArray,

ZArray,Epsilon0,Kappa,H)

% PlotLaminateTsaiWuSfa plots the through-the-thickness variation (i.e. as a function of z)

% of the Tsai-Wu factor of safety for given mid-surface strains and curvatures in a laminate.

% It also outputs the minimum factor of safety, its z-location and the layer of

% the laminate it occurs in.

%

% Syntax:

% PlotLaminateTsaiWuSfa(F1t,F1c,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

%

% Inputs:

% F1t - Tensile strength in the 1-direction (principal coordinate system)

% F1c - Compressive strength in the 1-direction (principal coordinate system)

% F2t - Tensile strength in the 2-direction (principal coordinate system)

% F2c - Compressive strength in the 2-direction (principal coordinate system)

% F6 - Shear strength in the 1-2 plane (principal coordinate system)

% ThetaArray - Nx1 vector of layer fiber orientations, where N is the number

% of layers in the laminate.

% QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

% stiffnesses of the kth layer of the laminate

% ZArray - Array of interface z-coordinates of a laminate

% Epsilon0 - Mid-surface strains of the laminate

% Kappa - Mid-surface curvatures of the laminate
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% H - Total height, i.e. thickness, of the laminate

%

% Output:

% SfaMin - Minimum Tsai-Wu factor of safety

% kmin - Minimum Tsai-Wu factor of safety layer of occurence

% zmin - Minimum Tsai-Wu factor of safety location (height) of occurence

% Also the plots are an output

%

% Author: Senthil S. Vel, University of Maine

%

% See also PlotLaminateStresses, PlotLaminateStrains, PlotLaminateTsaiWuSfr .

% Read global plot parameters

global LineThickness

% Determine the number of layers from the QBarArray

N = length(QBarArray);

% Specify the number of sampling points per layer for the plots

PointsPerLayer = 500;

% Prepare the figure

figure(’Name’,’Safety factor Sfa’);

clf;

hold on;

% Initialize the minimum safety factor value

SfaMin = inf;

for k = 1:N

% Sample points from Z(k)-eps to Z(k+1)+eps. The eps is used to

% avoid ambiguity of which layer the interface belongs to. Use a very

% small value for the parameter eps to ensure points close to the

% interfaces are included in the plots

eps = 1e-12;

zloc = linspace(ZArray(k)+eps,ZArray(k+1)-eps,PointsPerLayer);

% Evaluate the safety factor at the sampling points

for n = 1: PointsPerLayer

% Evaluate stresses in the XY coordinate system

StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,zloc(n));

% Transform stresses to the 1-2 coordinate system

Ts=StressTransformationMatrix(ThetaArray(k));

Stresses12 = Ts*StressesXY;
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% Calculate the safety factor

[Sfa(n), Sfr(n)]=TsaiWu(F1t,F1c,F2t,F2c,F6,Stresses12);

% Update the min safety factor values

if Sfa(n) < SfaMin

SfaMin = Sfa(n);

zmin = zloc(n);

kmin = k;

end

%SfaMin = min(SfaMin, min(Sfa));

end

% plot the safety factor variation in layer k

hp = plot(Sfa,zloc/H,’k-’,’LineWidth’,LineThickness);

end

% Insert axes labels

xlabel(’Safety factor $S_{fa}$’,’Interpreter’,’latex’);

ylabel(’$z/H$’,’Interpreter’,’latex’);

% Format the laminate plot

FormatLaminatePlot(ZArray);

end

Plot Tsai-Wu safety factor ( 5 A

function [SfrMin,kmin,zmin] = PlotLaminateTsaiWuSfr(F1t,F1c,F2t,F2c,F6,ThetaArray,QBarArray,

ZArray,Epsilon0,Kappa,H)

% PlotLaminateTsaiWuSfr plots the through-the-thickness variation (i.e. as a function of z)

% of the Tsai-Wu reversed-in-sign factor of safety for given mid-surface strains and

% curvatures in a laminate. It also outputs the minimum factor of safety, its

% z-location and the layer of the laminate it occurs in.

%

% Syntax:

% PlotLaminateTsaiWuSfr(F1t,F1c,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

%

% Inputs:

% F1t - Tensile strength in the 1-direction (principal coordinate system)

% F1c - Compressive strength in the 1-direction (principal coordinate system)

% F2t - Tensile strength in the 2-direction (principal coordinate system)

% F2c - Compressive strength in the 2-direction (principal coordinate system)
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% F6 - Shear strength in the 1-2 plane (principal coordinate system)

% ThetaArray - Nx1 vector of layer fiber orientations, where N is the number

% of layers in the laminate.

% QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

% stiffnesses of the kth layer of the laminate

% ZArray - Array of interface z-coordinates of a laminate

% Epsilon0 - Mid-surface strains of the laminate

% Kappa - Mid-surface curvatures of the laminate

% H - Total height, i.e. thickness, of the laminate

%

% Output:

% SfrMin - Minimum Tsai-Wu factor of safety (reversed-in-sign)

% kmin - Minimum Tsai-Wu factor of safety (reversed-in-sign) layer of occurence

% zmin - Minimum Tsai-Wu factor of safety (reversed-in-sign) location (height) of

occurence

% Also the plots are an output

%

% Author: Senthil S. Vel, University of Maine

%

% See also PlotLaminateStresses, PlotLaminateStrains, PlotLaminateTsaiWuSfa .

% Read global plot parameters

global LineThickness

% Determine the number of layers from the QBarArray

N = length(QBarArray);

% Specify the number of sampling points per layer for the plots

PointsPerLayer = 500;

% Prepare the figure

figure(’Name’,’Reversed-in-sign safety factor |Sfr|’);

clf;

hold on;

% Initialize the minimum safety factor value

SfrMin = inf;

for k = 1:N

% Sample points from Z(k)-eps to Z(k+1)+eps. The eps is used to

% avoid ambiguity of which layer the interface belongs to. Use a very

% small value for the parameter eps to ensure points close to the

% interfaces are included in the plots

eps = 1e-12;

zloc = linspace(ZArray(k)+eps,ZArray(k+1)-eps,PointsPerLayer);
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% Evaluate the safety factor at the sampling points

for n = 1: PointsPerLayer

% Evaluate stresses in the XY coordinate system

StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,zloc(n));

% Transform stresses to the 1-2 coordinate system

Ts=StressTransformationMatrix(ThetaArray(k));

Stresses12 = Ts*StressesXY;

% Calculate the safety factor

[Sfa(n), Sfr(n)]=TsaiWu(F1t,F1c,F2t,F2c,F6,Stresses12);

% Update the min safety factor values

if abs(Sfr(n)) < SfrMin

SfrMin = abs(Sfr(n));

zmin = zloc(n);

kmin = k;

end

end

% plot the safety factor variation in layer k

plot(abs(Sfr),zloc/H,’k-’,’LineWidth’,LineThickness);

end

% Insert axes labels

xlabel(’Safety factor $|S_{fr}|$’,’Interpreter’,’latex’);

ylabel(’$z/H$’,’Interpreter’,’latex’);

% Format the laminate plot

FormatLaminatePlot(ZArray);

end

Format laminate through-thickness plots

function FormatLaminatePlot(ZArray)

% FormatLaminatePlot sets up the figure characteristics

% for the through-the-thickness plots for a laminate

%

% Syntax:

% FormatLaminatePlot(ZArray, FontSize)

%

% Inputs:
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% ZArray - Array of interface z-coordinates of a laminate

%

% Output:

% No output, the plot through-thickness aesthetics will be modified

%

% Author: Senthil S. Vel, University of Maine

% Read global variables

global LineThickness FontSize

global InterfaceLineColor MidsurfaceLineColor VerticalAxisLineColor

% Number of layers

N = length(ZArray)-1;

% Laminate thickness

H = ZArray(N+1)-ZArray(1);

% Set the plot box aspect ratio to the golden ratio

pbaspect([1.618 1 1])

% Get axis range

V = axis;

% Change the axis settings to make the figure more readable

ha = gca;

set(ha,’Box’,’on’);

set(ha,’FontSize’,FontSize);

set(ha,’LineWidth’,0.7*LineThickness);

% Draw the mid-surface

x =[V(1); V(2)]; % The line extends over the entire horizontal range

y = [0;0];

hl = line(x,y);

set(hl,’LineStyle’,’--’)

set(hl,’Color’,MidsurfaceLineColor);

set(hl,’LineWidth’,LineThickness/4);

uistack(hl,’bottom’);

% Plot horizontal lines corresponding to the bottom surface, top

% surface and interface

for k = 2:N

x =[V(1); V(2)]; % The line extends over the entire horizontal range

y = [ZArray(k)/H; ZArray(k)/H];

hl = line(x,y);

set(hl,’Color’,InterfaceLineColor);



B Matlab Code for Laminated Composite Structures 229

set(hl,’LineWidth’,LineThickness/4);

uistack(hl,’bottom’);

%get(hl)

%set(hl,’Visible’)

end

% Draw the vertical line corresponding to VAxisValue

x =[0; 0];

y = [V(3);V(4)]; % The line extends over the entire vertical range

hl = line(x,y);

set(hl,’LineStyle’,’-’)

set(hl,’Color’,VerticalAxisLineColor);

set(hl,’LineWidth’,LineThickness/4);

uistack(hl,’bottom’);

% Show labels for the interface locations if there are less than 10 layers

if N < 10

% Set yticks

yticks(ZArray/H);

% Set ytick labels

[Num,Den]=rat(ZArray/H);

for k = 1:N+1

if Num(k) == 0

YTickLabelStr{k} = ’0’;

else

YTickLabelStr{k} =strcat(num2str(Num(k)),’/’,num2str(Den(k)));

end

yticklabels(YTickLabelStr)

end

else

% Show only the bottom surface, midsurface and top surface labels

% if there are more than 10 layers so that the ytick labels are not

% too cluttered.

yticks([-1/2 0 1/2]);

end

% Reset axis range

axis(V);

end
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B.4 Sample Analysis Scripts

Lamina analysis

%**************************************************************************

% * Sample lamina analysis script *

%

% Calculates the response of an off-axis lamina to

% prescribed stresses in the global coordinate system

%**************************************************************************

%% Clear variables and close all figures

clearvars

close all

%% Read lamina properties

[E1,nu12,E2,G12,F1t,F1c,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties;

%% Specify the ply orientation in degrees

Theta = 30;

fprintf(’Lamina orientation theta = %g degrees \n\n’,Theta)

%% Specify the stresses in the X-Y coordinate system

StressesXY = [225; 50; 50]*1e6;

disp(’Stresses in the X-Y coordinate system (MPa):’)

disp(StressesXY/1e6)

%% Calculate the reduced compliance matrix

S = ReducedCompliance(E1,nu12,E2,G12);

disp(’Reduced compliance S (TPa^-1)=’); disp([S]*1e12)

%% Calculate the reduced stiffness matrix

Q = ReducedStiffness(E1,nu12,E2,G12);

disp(’Reduced stiffness Q (GPa) =’); disp([Q]/1e9)

%% Compute the off-axis reduced compliance matrix

SBar = OffAxisCompliance(S,Theta);

disp(’Off-axis compliance SBar (TPa^-1)=’)

disp([SBar]*1e12)

%% Compute the off-axis reduced stiffness matrix

QBar = OffAxisStiffness(Q,Theta);

disp(’Off-axis stiffness QBar (GPa) =’)

disp([QBar]/1e9)
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%% Compute the stress transformation matrix

Ts=StressTransformationMatrix(Theta);

disp(’Stress transformation matrix Ts:’)

disp(Ts)

%% Compute the stresses in the 1-2 coordinate system

Stresses12 = Ts*StressesXY;

disp(’Stresses in the 1-2 coordinate system (MPa):’)

disp(Stresses12/1e6)

%% Calculate the strains in the X-Y coordinate system

StrainsXY = SBar*StressesXY;

disp(’Strains in the X-Y coordinate system (micro m/m):’)

disp(StrainsXY/1e-6)

%% Compute the strain transformation matrix

Te=StrainTransformationMatrix(Theta);

disp(’Strain transformation matrix Te:’)

disp(Te)

%% Calculate the strains in the 1-2 coordinate system

Strains12 = Te*StrainsXY;

disp(’Strains in the 1-2 coordinate system (micro m/m):’)

disp(Strains12/1e-6)

%% Calculate the safety factor using the Tsai-Wu failure theory

[Sfa, Sfr]=TsaiWu(F1t,F1c,F2t,F2c,F6,Stresses12);

fprintf(’Tsai-Wu safety factor for actual stress state: Sfa = %g \n\n’,Sfa)

fprintf(’Tsai-Wu safety factor for reversed-in-sign stress state: Sfr = %g \n\n’,Sfr)

Laminate analysis

%**************************************************************************

% * Sample laminate analysis script *

%

% Calculates the response of a representative laminate to

% prescribed force and moment resultants

%**************************************************************************

%% Clear variables and close all figures

clearvars

close all
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%% Read lamina properties

[E1,nu12,E2,G12,F1t,F1c,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties;

%% Specify the stacking sequence of the plies

ThetaArray = [0 -45 90];

fprintf(’Laminate stacking sequence Theta = %s (degrees) \n\n’,strcat(’[’,num2str(ThetaArray),’

]’))

%% Specify the force resultants per unit width (N/m)

Nx = 0;

Ny = 0;

Nxy = 0;

%% Specify the momment resultants per unit width (N.m/m)

Mx = 1.0;

My = 0;

Mxy = 0;

%% Determine the number of layers

N = length(ThetaArray);

fprintf(’Number of layers: %g \n\n’,N)

%% Compute total laminate thickness H

H = N*h;

fprintf(’Laminate thickness H = %g mm \n\n’,H/1e-3)

%% Evaluate laminate interface locations Z_k

for k = 1:N+1

ZArray(k)=-H/2+(k-1)*h;

end

%fprintf(’Laminate interface locations Z = %s mm \n\n’,strcat(’[’,num2str(ZCoord/1e-3),’]’))

disp(’Laminate interface locations Z (mm) =’);

disp(strcat(’[’,num2str(ZArray/1e-3),’]’));disp(’ ’)

%% Calculate the reduced compliance matrix

S = ReducedCompliance(E1,nu12,E2,G12);

disp(’Reduced compliance matrix S (TPa^-1)=’);

disp([S]*1e12)

%% Calculate the reduced stiffness matrix

Q = ReducedStiffness(E1,nu12,E2,G12);

disp(’Reduced stiffness matrix Q (GPa) =’);

disp([Q]/1e9)

%% Compute the off-axis reduced stiffness matrices
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for k = 1:N

QBarArray{k}=OffAxisStiffness(Q,ThetaArray(k));

disp(strcat(’Off-axis stiffness QBar{’,num2str(k),’} (GPa) =’));

disp(QBarArray{k}/1e9)

end

%% Compute laminate ABD stiffness matrix

[A,B,D,ABD,a,b,d,abd]= LaminateABD(N,QBarArray,ZArray);

disp(’A (10^6 N/m):’), disp(A/1e6)

disp(’B (N):’), disp(B)

disp(’D (10^-3 N-m):’), disp(D/1e-3)

disp(’a (10^-9 m/N):’), disp(a/1e-9)

disp(’b (10^-3 1/N):’), disp(b/1e-3)

disp(’d (1/N-m):’), disp(d)

%% Compute the midsurface strains and curvatures

[Epsilon0,Kappa] = MidsurfaceStrainsCurvatures(abd,Nx,Ny,Nxy,Mx,My,Mxy);

disp(’Midsurface strains Epsilon0 (micro):’)

disp(Epsilon0/1e-6)

disp(’Midsurface curvatures Kappa (1/m):’)

disp(Kappa)

%% Calculate the strains and stresses at the z location of interest

z = H/4; % Sample z-location

fprintf(’z coordinate of interest = %g mm \n\n’,z/1e-3)

k = WhichLayer(N,ZArray,z);

fprintf(’z coordinate belongs to layer %g \n\n’,k)

StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z);

disp(’StrainsXY at the z location (micro):’)

disp(StrainsXY/1e-6)

StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,z);

disp(’StressesXY at the z location (MPa):’)

disp(StressesXY/1e6)

%% Plot the through-thickness variation of strains

PlotLaminateStrains(’ex’,ThetaArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStrains(’ey’,ThetaArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStrains(’gammaxy’,ThetaArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStrains(’e1’,ThetaArray,ZArray,Epsilon0,Kappa,H)
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PlotLaminateStrains(’e2’,ThetaArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStrains(’gamma12’,ThetaArray,ZArray,Epsilon0,Kappa,H)

%% Plot the through-thickness variation of stresses

PlotLaminateStresses(’sx’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStresses(’sy’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStresses(’tauxy’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStresses(’s1’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStresses(’s2’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStresses(’tau12’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

%% Plot the through-thickness variation of the safety factor Sfa

[SfaMin,kmin,zmin] = PlotLaminateTsaiWuSfa(F1t,F1c,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,

Epsilon0,Kappa,H);

fprintf(’Minimum laminate safety factor: SfaMin = %g \n’,SfaMin)

fprintf(’Layer where SfaMin occurs: k = %g \n’,kmin)

fprintf(’Location where SfaMin occurs: z = %g mm \n\n’,zmin/1e-3)

%% Plot the through-thickness variation of the safety factor Sfr

[SfrMin,kmin,zmin] = PlotLaminateTsaiWuSfr(F1t,F1c,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,

Epsilon0,Kappa,H);

fprintf(’Minimum laminate reversed-in-sign safety factor: |SfrMin| = %g \n’,SfrMin)

fprintf(’Layer where SfrMin occurs: k = %g \n’,kmin)

fprintf(’Location where SfrMin occurs: z = %g mm \n\n’,zmin/1e-3)
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