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PART I: FUNDAMENTALS



Linearized Anisotropic Elasticity

1.1 Surface and internal forces

1.1.1 Traction vector

Let us consider a solid body that is subjected to external loads as shown in Fig. 1.1(a). In order to
characterize the intensity of internal forces at a point x, we section the body into two regions as shown
in Fig. 1.1(b). Let us consider a small area Aa on the section with unit outward normal n. The resultant

AF

(a) (b)

Figure 1.1: Forces acting on (a) a solid body and (b) a sectioned region of a solid body

force on the area Aa is denoted by AF. The traction vector f is defined as the resultant force per unit

area.

. AF
Sl m) = lim 2 (L.1)

The traction vector characterizes the intensity of the internal force acting on a surface. Note that, in
general, the traction vector depends on both the spatial location x and the unit normal n.

The traction vector is a force per unit area although it is usually represented by a single arrow for the
sake of convenience as shown in Fig. 1.2. In general, the traction vector f need not be parallel to the
unit normal n. It can be resolved into a component that is normal to the surface (normal traction) and a
component that is parallel to the surface (shear traction). It can be systematically shown that the traction

vector is an odd function of the normal vector. That is,

f(x/ _n) = _f(x/ I’l) (12)
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() (b)

Figure 1.2: Representation of the traction vector as (a) a distributed load and (b) a single arrow

This is known as Cauchy’s Fundamental Lemma and is equivalent to Newton’s third law when applied

to the opposite surfaces of a sectioned body.

1.1.2 Stress tensor

Consider a surface with normal n passing through point x in an elastic body. The Cauchy stress theorem
states that there exists a second order tensor o (x) called the Cauchy stress tensor that that relates the

normal vector n to the traction vector f acting on the surface.
fx,n) =0’ (x)n (1.3)

This can be written in matrix notation as follows,

f on o2 o031 |m
| =lone on oxn||n (1.4)
J3 o113 023 033 [n3

where o7;; are the components of the Cauchy stress tensor. Consider a volume element dv located at
point x in a body as shown in Fig. 1.3(a). The components of the traction vector f acting on the surfaces
of the element are obtained by substituting the components of the normal vector for each surface into
Eqn. 1.4. For example, the traction vector acting on surface with normal oriented parallel to the positive
x1-direction, i.e., {n} = [100]” is {t} = [o11 012 o13]” . It can be shown using the balance of angular

momentum at a point that the Cauchy stress tensor is symmetric, i.e., 0y; = 0j;.

Equation (1.4) can be expressed in compact matrix notation as follows

{f}=[oc{n} (1.5)

The Cauchy stress tensor o has units of N/m? (i.e. Pa) or Ib f /in? (i.e. psi).
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033
033
031,/ S
013
& ) X )~—- 022
X 012 a1
X3 011
 x
xl 2

Figure 1.3: (a) Element in an body that is subjected to loads and (b) stress components acting on a
volume element

1.2 Strain

Consider a material particle P that is initially located at x in the undeformed or reference configuration

as depicted in Fig. 1.4.

Undeformed _
configuratio Displacement

Deformed
configuration

Figure 1.4: Deformation of an elastic body

The position vector of particle P in the deformed configuration is denoted by x’. The displacement
vector u of particle P is given by
u=x"-x (1.6)

In general, the displacement vector u will vary from point to point, and it also depends on time ¢, i.e.,

u=u(x,r) (1.7)

In the case of quasi-static deformation, the position of a particle in the deformed configuration does not
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depend on time ¢ and the displacement field is a function of the reference configuration coordinates
u=u(x) (1.8)

where u(x) is the displacement field.

The strain tensor characterizes the intensity of deformation at a point. In the case of small deformations,
the infinitesimal strain tensor ¢ is evaluated as follows [1].
1 T
s=3 (Vu+v u) (1.9)
where Vu is the gradient of the displacement field with respect to the spatial coordinates x and the

superscript T denotes its transpose.

The infinitesimal strain tensor is a symmetric second-order tensor. In the case of a Cartesian coordinate

system, the components of the strain tensor are

£ii = 1 (0u; + 8“]’
EJ_Z ax]' Bxl-

(1.10)

The six components of the strain tensor in a Cartesian coordinate system are €11, €22, €33, €12, €23 and
£13. The following are the three normal strains in the coordinate directions,

€11 = %, £ = %, £33 = Ous (1.11)
0xq 0x

The strain components €12, €23 and €13 are the tensorial shear strains in each of the three coordinate

planes
1({0u; N ouy
e = |7—++—
272 ox, " ax
1 ({0u, Ous
=2 —=+ == 1.12
273 Ox3 * axz) (112)
o5 = 1 (21, Ous
P72\ ax T o
The engineering shear strains y;; are twice the tensorial shear strains ¢;; and are given by
Yij = 28ij (l * ]) (113)

The engineering shear strain y;; represents the reduction in angle between two material line elements
that were originally parallel to the x; and x;-axes in the undeformed configuration. The shear strain is

measured in radians.
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1.3 Coordinate transformation

The components of the displacement vector u, stress tensor o~ and the strain tensor & depend on the
coordinate system used for the analysis. If the components of a vector or tensor are known in one
coordinate system, the components in another coordinate system can be obtained through appropriate
vector and tensor transformation rules. Consider two orthonormal coordinate systems (x1,x2,x3) and

(x1,%x5,x}) as shown in Fig. 1.5.

X2

» X1

X3
X3

Figure 1.5: The primed and unprimed orthonormal coordinate systems

The two coordinate are related through the direction cosines matrix A, the elements of which are
defined as follows
Ajj = cos(x;, x;) (1.14)

where cos(x/, x;) represents the cosine of the angle between the coordinate axes x; and x;. For example,
Aqp = cos(x], x2) is the cosine of the angle between x] and x;.

EXAMPLE 1.1: Direction cosine matrix

Consider two coordinate systems in which the x} and x3 axes aligned in the same direction and the x]
is oriented at an angle 6 relative to the x; axis as shown in Fig. 1.6.

xy X2

7]
| r

I
X3, X3

Figure 1.6: Orientation of the primed coordinate system relative to the unprimed coordinate system
for 2D tensor transformations



1 Linearized Anisotropic Elasticity | 7

In this case, the direction cosine matrix,

'cos(xi,xl) cos(xy,x2) cos(xy,x3)
[A] = |cos(x),x1) cos(x},x2) cos(x),x3)

[cos(x},x1)  cos(x}, x2) cos(x}, x3)

(1.15)
cos(0) c0s(90° —0) cos(90°)
= |cos(90° + ) cos(0) cos(90°)
| cos(90°) c0s(90°) cos(0°)
which can be written as
m n 0
[Al=|-n m O (1.16)
0 0

where m = cos§ and n = sin 4.

1.3.1 Transformation of vectors

A vector, such as the displacement, can be written in terms of the components in either the primed or

the unprimed coordinate systems
— _ ’ 7 ’r 7 ’ 7
u =ujey +uxex +uzes = uje; +uye, +use; (1.17)

where u; and u; are the components of the vector u in the unprimed and primed coordinate system,
respectively. The components of a vector in the primed coordinate system can be obtained from the

components in the unprimed coordinate system using the direction cosines matrix as follows
{u’} = [AN{u} (1.18)
where {u’} and {u} are 3 x 1 column arrays of components in the primed and unprimed coordinate

system, respectively.

1.3.2 Transformation of second-order tensors

The components of a second-order tensor T' transform as follows between two different coordinate

systems
(7] = [AI[T][AT" (1.19)
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where [T] and [7’] are the components of the second-order tensor T in the unprimed and primed
coordinate systems, respectively. Equation (1.19) can be expressed in component form as follows

3 3
T/ = > > AipAjgTog (1.20)

1.4 Voigt notation

1.4.1 Stresses

In order to make it easier to perform the stress and strain transformation, we define the Voigt contracted
notation for the stress components

01=011, O02=02, 03=033

(1.21)
04 =023, 05=013, 06=012
The contracted stress components can be arranged in the form of a column array as follows,
o1 011
o2 o2
o o
(o} ={7t=1"% (1.22)
04 023
a5 013
06 012
1.4.2 Strains
The strain components are contracted in the following manner,
€1 =¢€11, &2 =¢&p, E3=&3
(1.23)

g4 =7y3 =263, &5=7Y13=2613, &6 = Y12 =261

where y;; are the engineering shear strains.
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The contracted strain components can be arranged in the form of a column array as follows,

€1 €11
&2 €22
(o)=L 1o (1.24)
&4 Y23
€5 Y13
€6 Y12

1.5 Transformation of stresses and strains

1.5.1 Transformation of stress components
The components of the stress tensor transform as follows
[0'] = [Al[o][A]" (1.25)

where [o] and [0’] are the components of the stress tensor o in the unprimed and primed coordinate
systems, respectively. Equation (1.25) can be expressed in component form as follows

3 3

i = Z Z AipAjqTpq (1.26)

p=1g=1
For example,

3 3

oy = Z Z A1pA1gTpg
p=1g=1
= AT o1 + A11A12012 + A11A13013 (1.27)

2
+ A12A11021 + AT,022 + A12A130723

2
+A13A11031 + A13A12032 + A3033

Using the Voigt contracted notation (1.21), the stress transformation relationship for o/, in Eqn.1.27
can be expressed in terms of contracted stresses

0'1’ = A%lO'l + A%ZO'Z + A%30'3 + 2A12A13O’4 + 2A11A130’5 + 2A11A120’6 (1.28)

Using the Voigt contracted notation, the stress transformation Eqn. (1.26) can be written as
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{o"} = [To {o} (1.29)
where [T, ] is the 6 x 6 stress transformation matrix
[ A3 A3, A3, 2A12A13 2A13A11 2A11A12
A% A% Ao 2A2 A% 2A23An 2A0An
A? A3 AZ 2AnA 2A33A 2A5A
[Ta-] _ 31 32 33 324133 33431 314132 (130)
A2Az1 AnAzn A3Azz ApAsz+ApAzn A2As+A3A3r ApAsr+AnA3
Az1A11 AnAz AsAz ApAsz+AAn AizAsz+Andsz AnAsn+ApAs
[A11421 AppAn AzAz ApAxp+AAn AAz +AnAxs AnAn+ApAn)
whose A;; are the components of the direction cosines matrix.
1.5.2 Transformation of strain components
The components of the strain tensor transform as follows
[¢'] = [Al[e][A]" (1.31)

where [¢] and [¢’] are the components of the strain tensor € in the unprimed and primed coordinate
systems, respectively. The &1 component of the strain tensor transforms as follows

Si = A%lsl + A%zsz + A%383 + A12A1384 + A11A1385 + A11A1284 (1.32)
This can be written as
{e'} = [Te]{e} (1.33)
where [T,] is the 6 X 6 strain transformation matrix
A% A3, A3, A12A13 A13An AnAn
A2, A3, A3, AxAzs AxAn AnAxn
(T,] = A%, A3, A3, A3As33 A33Az A31A3 (134)
2401431 2AnAn 2A3Ass AnAss+AnAn AnAss+AxnAs; AnAs +AxAxp
2A31A11 2A3A1n 2A33A13 ApAsz+A1zAsz A3Asi + Andsz A1z + ApAsz
2A11A21 2A12A22 2A13A3 A1pA2z+A3An  A13An +AnAn AnAn +ApA |
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The strain transformation matrix [T.] is related to the stress transformation matrix [T, ] as fol-

lows

[Tel = [To]™" (1.35)

EXAMPLE 1.2: 2D Coordinate transformation

In the case of a 2D coordinate transformation corresponding to a rotation of the coordinate system
about the x3-axis by an angle # shown in Fig. 1.6 the direction cosines matrix is (refer Eqn. (1.16))

m n 0
[A]=|-n m O (1.36)
0 0 1

where m = cos# and n = sin §. The stress transformation matrix for 2D coordinate transformation
is obtained by substituting the components of the direction cosines matrix (1.36) into the stress

transformation matrix (1.30)

m> n> 0 0 0 2mn
> m> 0 0 0 —2mn
(T,] = 0 0 1 0 O 0 (137)
0 0 0 m -n 0
0 0 0 n m 0
-mn mn 0 0 0 (m?- nz)_

The strain transformation matrix for 2D coordinate transformations, obtained from (1.34) and (1.36) is

m2 n” 0 0 0 mn
n? m2 0 0 0 —mn
0 0 1 0 O 0
T.] = 1.38
7] 0 0 0 m -n 0 (1.38)
0 0 0 n m 0
—2mn 2mn 0 0 0 (m*-n?)]




1 Linearized Anisotropic Elasticity | 12

1.6 Constitutive equations

1.6.1 Elastic stiffnesses

The generalized Hooke’s law for an anisotropic material is expressed as
P

3

Z Cijkigki (1.39)
1

3
O'L'J'=
k=1 I=

where C;ji; are elastic constants which depend on the material. C;j; are the components of a fourth-
order tensor known as the elastic stiffness tensor. Since the stress and strain tensors are symmetric, the

stiffness tensor exhibits the following symmetries,
Cijki = Cjir1 = Cijik (1.40)

In contracted notation, Eqn. (1.39) can be written as

6
Tp = Cpasg (1.41)
q=1

where C,,, are the elastic stiffnesses in contracted notation with
Cpq =Cijn (1.42)

and indices p and g are the Voigt contractions of ij and &/, respectively,

ijorkl +— porg

11 1
22 2
33 3
23 or 32 4
13 or 31 5
12 or 21 6
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The stress-strain relationships (1.41) can be expressed in matrix form as

o1 (Cii Cip Ci3 Cu Cis Cig| (&1
o2 Cn Cn Gz Cu (O Cypf |&2
C31 Czxp C33 Ci C35 C
o3 _|Ca1 C3x C33 Cx C35 C36| f&3 (1.43)
o Cy Cap Ci3 Cu Cs5 Cup| | &4
(o5 Cs1 G2 Cs3 Csy Cs5 Csel |5
d6) |[Ce1 Ce2 Ce3 Cos Cos Ces| (€6
Eqn. (1.43) can be written in compact form as
{o} =[C]{e} (1.44)
where [C] is a 6 x 6 matrix and is known as the elastic stiffness matrix.
1.6.2 Elastic Compliances
Hooke’s law for an anisotropic material can be written in the alternate form,
{e} =[S {o} (1.45)

where [S] is a 6 X 6 matrix and is known as the elastic compliance matrix. The compliance matrix is the
inverse of the stiffness matrix, i.e.
[s]=[C]" (1.46)

Eqn. (1.45) can be written in component form as

€1 S11 S12 S13 S1e S15 Si6| |01
€2 S21 S22 823 S2a Sos Sae| |02
e3| _ [S31 S S Saa S5 Sse| o (147)
&4 Sa1 Si2 Sa3 Saa Ss5 Sas| [0u
€5 S51 Ssp 853 Ssa Ss5 Ss6| |05
g6) [Se1 Se2 Se3 Sea Se5 Sec| |06
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1.6.3 Strain energy density

The strain energy density U is the elastic potential energy stored per unit volume due to deformation.

13,3 18
U=§ O-ijgijzizo-igi
i=1 j=1 i=1 (1.48)
= LY (e} = (e} (o)
= 2 ag Er = 2 E o
Substitution of the stress o from Hooke’s law (1.44) into (1.48), gives
1 T 17
U=3(CHe" {e} = 5{et ([CHe}) (1.49)
which implies that the following relationship must hold for all strains,
1 \rpmr L o7
&) (€1 (e} = 5{e)T [Clie)
1
ey (11 - [C)) (e} =0 (1.50)

[Cc]" =[C]
In other words, the 6 x 6 elastic stiffness matrix is symmetric, i.e., C;; = Cj;.

Ci1 Cip Ciz3 Ciu Ci5 Cye
Cio Cpn Cp Cy Cp Cyp
C C C C C C
(] = 13 C3 C33 Cza C35 Cz (151)
Ciu Cy C3p Cy Cg5 Cye
Cis5 Cx C35 Cy45 Cs5 Csg

[Ci6 Co6 C36 Cae Cse Cos|

In general, there are 21 independent elastic constants for an elastic material. Since the elastic stiffness
matrix [C] is symmetric, its inverse, the elastic compliance matrix [S], is also symmetric and can be

written as ) .
S11 S12 S13 Suu S15 Sie
S12 S22 823 S24 S5 Sa6
(5] = S13 823 S33 S3a S35 S3e (152)
S1a S24 831 Ssa Sss5 Sse
S15 S5 S35 Sa5 Ss5 Sse

516 S26 S36 Sa6 Ss6 Ses)

1.7 Transformation of elastic stiffnesses and compliances

The constitutive equation (1.44) in the unprimed coordinate system is transformed to the primed
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coordinate system as follows,

{o}=[CH{ €}
[To] o'} = [CITe] e’
{07} = [T [CITe] He')
= [T,1[C1[T,1" {&'}

which can be written as
{o’} =[C"]{e"}

where [C’] is the elastic stiffness matrix in the primed coordinate system

1.8 Material symmetry

15

(1.53)

(1.54)

(1.55)

(1.56)

In the most general case, an anisotropic elastic material has 21 independent material constants. How-

ever, it may have fewer independent elastic constants if it exhibits symmetries.

1.8.1 Monoclinic materials

Monoclinic materials have one plane of reflectional symmetry. Consider a monoclinic material that

exhibits reflectional symmetry about the x; — x2 coordinate plane. Let’s assume that it subjected to an

axial strain &1 and a shear strain £5(= y13) as depicted in Fig. 1.7(a) with all other strain components

being zero.
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: xz‘ y > X1 : xé? V > xi
(b) | x;

Figure 1.7: Monoclinic material subjected to normal strain in the x; direction and shear strain in the
x1 — x3 plane (a) prior to reflection and (b) after reflection

The strain energy density (1.48) can be written in terms of strain components,

1 6 1 6 6
=5 Z =5 Z Z pq€p€q (1.57)
p=1g=1

The strain energy density corresponding to the deformation in Fig. 1.7(a) is

1
ECHS% + C158185 + §C558§ (158)

Next, the material is reflected about its symmetry plane and subjected to the same deformation, as
shown in Fig. 1.7(b). The strain energy density is unaffected since the material has been reflected about
its symmetry plane prior to deformation. Thus,

! Cls(el)? (1.59)

1 ’ ’ ’
U= §C11(8 1)2 +C158185+ 5

The elastic stiffnesses remain the same when a monoclinic material is reflected about its symmetry
plane. In addition, the normal strain in the reflected coordinate system remains the same while the

shear strain changes sign, i.e., &/

1 = &1 and & = —es. Therefore, the strain energy density

1 1
U = =Cpe] +Ciser(—e5) + —(755(—85)2

% . (1.60)
2C1181 Ci5e185 + 2C5585
Subtracting (1.60) from (1.58) gives
2Ci5e185 =0 (1.61)

Since this result has to hold true for all £; and &5, we infer that the elastic stiffness C15 = 0. Using a

similar argument, it can be shown that C14 = Co4 = C25 = C34 = C35 = C46 = Cs56 = 0 for monoclinic
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materials. Thus, the elastic stiffness matrix [C] reduces to

(Ch C G35 0 0 Cy
Cip Cn Cn 0 0 Cx
C C C 0 0o cC

(] = 13 C3 Cz3 36 (1.62)
0 0 0 Cy Cg5 O
0 0 0 C4p5 Cs5 O

[Ci6 C6 C36 0 0 Ces)

A monoclinic material has 13 independent material constants.

1.8.2 Orthotropic materials

Orthotropic materials have three orthogonal planes of reflection symmetry and the elastic stiffness
matrix has the following form

[cli Cn Ci3 0
Cpp Cn C3 O
Ciz Cp C;3 0
0 0 0 Cu O
0 0 0 0 Cs5 O
0 0 0 0 0 C66_

o O O
o O © O

(1.63)

Orthotropic materials have 9 independent material constants.

1.8.3 Transversely isotropic materials

Transversely isostropic materials exhibit rotational symmetry about an axis as shown in Fig. (1.8).

X3

\\ /)

——

Figure 1.8: Transversely isotropic material
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The elastic stiffness matrix has the following form if a material exhibits rotational symmetry about the

X1 axis, )

Cu Ci2 Ciz 0 O

Cp C» C3 0 0

Co C3 Cn 0 0
0 0 0 Cyg O
0 0 0 0 GCes O

(0 0 0 0 0 Ges,

(1.64)

o O © O

Note: Cyy = %( C2y — C3). Transversely isotropic materials have 5 independent material constants.

1.8.4 Isotropic materials

Ci1 Cp Cp 0 O
Cp Ci1 C2 0 O
Cp C2 C1 0 O
0 0 0 Ce¢ O
0 0 0 0 Cg O
(0 0 0 0 0 Cq

(1.65)

o O © O

where Cgg = %(Cn — C12). Isotropic materials have 2 independent material constants.

1.9 Engineering constants

Consider an orthotropic material with reflectional symmetry about the coordinate planes.

(a) When an orthotropic material is subjected to a normal stress o with all other stresses being zero,

the normal strain in the x; direction is

o1
== 1.66
&= (1.66)

where E; is the Young’s modulus in the x;- direction. The Poisson’s ratio is defined as

8]' .
vij = - when subjected to stress o (1.67)
l
When subjected to a stress o, the Poisson’s ratio v1 is defined as
&

Vip = —22 (1.68)

€1
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Thus the transverse normal strain &, induced by the normal stress o7 is

01 V12
&)= V€1 = —Vp— = ——0O 1.69
2 12€1 12 2 E 1 ( )
Similarly, the transverse normal strain &3 is
o1 V13
£&3=—-V3— = ——0 1.70
3 1B 5 (1.70)

When an orthotropic material is subjected to a normal stress o» with all other stresses being zero, the

normal strains induced are
g1 =———02, & =—, &=——"03 (1.71)

Similarly, when an orthotropic material is subjected to a normal stress o3 with all other stresses being

zero, the normal strains induced are

&1 =——7--03, & =—7703, &=/ (1.72)
3

. 1 S P g
1= 01— 02— —03
Eq E; Ej
V12 1 V32
E)=——7F01+—F—02— —03 (1.73)
Eq E; Ej
V13 V23 1
E&3=——"7"01— —02+—03

(b) When an orthotropic material is subjected to a shear stress 123, the shear strain

Y23 = (1.74)

Gxn

where G»3 is the shear modulus in the x; — x3 plane. This relationship can be written in contracted

notation as follows

&4 = GL230-4 (1.75)
Similarly, the other shear strains are
&5 = LO’
i G113 i (1.76)
€6 = G—u(f 6

where G13 and G1; are the shear moduli in the x; — x3 and x; — x» planes, respectively. Equations
(1.73),(1.75), (1.76) can be combined into a single matrix equation as follows
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al [2 -2 -2 0 0 0]fn

el |F2 5 -2 0 0 0|

es| _ = E% 0 0 O0]]os w77
€4 0 0 0 & 0 0f]|o '
€5 0 0 0 0 GLB 0| |os

&) [0 0 0 0 0 g0

The 6 x 6 matrix in (1.77) is the compliance matrix [S] in terms of the nine engineering constants. Since

the compliance matrix is symmetric,
vi2 _ Va1

—— == 1.78
E L (1.78)
Similar relationships exist that relate the other Poisson’s ratios and the Young’s moduli,
Vij _Vji 3 g
Yij Vit 1.79
E " E i #] (1.79)

Equations (1.79) are known as the reciprocity relations. Note that vi» # vy1 if E1 # E5. In general, vo; and
v12 are different but v can be calculated from v, and the Young’s moduli E7 and E».

An orthotropic material has a total of 9 engineering constants, namely E1, E», E3, v12, v13, v23, G12,
G13 and Ga3. The elastic compliances for an orthotropic material can be expressed in terms of the
engineering constants as

_ 1 __r2 V13
S11 = Er’ S12 = E’ S13 = B’
Spp=—, Spy=-B gmo L (1.80)
ZZ_EZI 23 = Ezr 33_E3/ .
1 1 1
=—, Ss5=——, Se6=—
44 Cm 55 G 66 G
The stiffness matrix [C] can be obtained by inverting the 6 x 6 compliance matrix [S].
(€] =[s]™ (1.81)

A transversely isotropic material is a special case of an orthotropic material. The engineering constants

in the case of a transversely isotropic material with rotational symmetry about the x; axis are

Ey, Ey=FE3 vip=vi3, V3,

E (1.82)

G12=G3, Gz = 20+ o)
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The compliance matrix can be written in terms of the 5 independent constants of a transverely isotropic

material ) .
oo B 0 0 0
e B
_yi2 _vs 1 0 0 0
[S]=| & E, B 21w (1.83)
0o o o 2 o o
0 0 0 0 gz O
0 0 0 0 0 &=
In the case of an isotropic material,
E1=Ey=E3=E, vip=viz=vy3=v,
G e Gon = Gon = G = E (1.84)
12=G13=0Gx = =20+
(1 _x _x 0 0
E E TE
v 1 v
£ &t & 0 0 0
% Vv 1
-X X = 0 0 0
[s]=( = B E .. (1.85)
o 0 o #M 0
o 0 o o XM
(0 0 0 0 0o 20w

1.10 Representative material properties

In this course, we will consider laminated composite structures composed of carbon fiber-reinforced
plies in all the exercises and assignments

1.10.1 Unidirectional carbon fiber-reinforced composite

and we will use a unidirectional carbon fiber-reinforced composite consisting of continuous IM7 fibers
embedded in a 8552 epoxy matrix in the examples. The properties of the matrix, the fiber and the
unidirectional fiber-reinforced composite are listed below.

The 8552 epoxy matrix is an isotropic material with the following properties

E
- 3 = = =— =
pm =1300 kg/m”, E, =4.67GPa, v, =037, G,= 20+ 1.70 GPa (1.86)

where p,, is the mass density and the subscript m denotes matrix properties.
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The IM7 carbon fibers are transversely isotropic with the following properties,

py =1780kg/m>, Ej; =276 GPa, Eps = Es; =15GPa,

vir =vizy =0.29, va3y =0.30, (187)
E>
Gy =Gizy =15GPa, Gozf = Z(Ti;gf) =5.77 GPa

where the subscript f denotes fiber properties.

The effective properties of the IM7/8552 unidirectional fiber-reinforced composite are obtained using
the asymptotic expansion homogenization (AEH) method. It uses a representative volume element
with a hexagonal arrangement of IM7 fibers in a 8552 epoxy matrix. The AEH equations are solved
numerically using the finite element method subject to periodic boundary conditions. The effective
engineering elastic properties of the IM7/8552 unidirectional fiber-reinforced composite are listed
below for a fiber volume fraction of 60%, i.e., Vy = 0.6.

p =1588 kg/m>, E; = 167.4 GPa, E; = E;=9.5GPa,

V12 = V13 = 0.33, Vo3 = 0.44, (1.88)
E>
= = 4:. P = —— = 0. P
G12 G13 8 G a, G23 2(1+V23) 3.3 GPa

The strengths of IM7 /8552 unidirectional fiber-reinforced composite are listed below

Fi;=2,700 MPa, Fi.=1,700 MPa, Fy =70 MPa,
cm =200 MPa, F6 =90 MPa

(1.89)

where Fy; is the longitudinal tensile strength, Fi. is the longitudinal compressive strength, F»;, is the
transverse tensile strength, F,. is the transverse compressive strength and Fg is the in-plane shear
strength.

1.10.2 Fabric-reinforced composite laminae

In some of the exercises, we will use fabric reinforced carbon/epoxy composite laminae whose

representative engineering properties are listed below.
p =1600 kg/m°, E; =77.0 GPa, E,=750GPa, vi2=0.06, G =65GPa (1.90)

where the 1-axis is the warp direction and the 2-axis is the weft/fill direction.
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The representative strengths of the fabric-reinforced carbon/epoxy composite laminae are listed below,

Fi, =963 MPa, Fy. =900 MPa, F> = 856 MPa, (1o1)
F>. =900 MPa, Fg=71MPa '

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and the
representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites.

1.1 Consider an x’-y’-z" coordinate system whose basis vectors e}, e} and e} are oriented in the di-
rections {1/v2,1/V2,0},{-1/2,1/2,1/V2} and {1/2,-1/2,1/V2}, respectively, relative to the x-y-z
coordinate system.

(a) Determine the stress transformation matrix [T ].

(b) If at a point in a composite structure the stresses in the x-y-z coordinate system are

o =100MPa, o, =100 MPa, o =80 MPa,
7,. =5MPa, 7., =10MPa, 7., =20MPa

determine the stresses in the x’-y’-z" coordinate using the stress transformation matrix [7].

1.2 Consider an x’-y’-z’ coordinate system whose basis vectors ei, eé and eé are oriented in the di-
rections {1/V2,1/v2,0},{~1/2,1/2,1/v2} and {1/2,~-1/2,1/V2}, respectively, relative to the x-y-z
coordinate system.

(a) Determine the strain transformation matrix [7].

(b) If at a point in a composite structure the strains in the x-y-z coordinate system are

ex =1000 e, &, =-1500 ue, &, =>500 pue,
Yyz =100 urad, yx; =300 urad, 7y, =800 urad

determine the strains in the x’-y’-z’ coordinate using the strain transformation matrix [7,].
1.3 The homogenized (or effective) engineering properties of a unidirectional fiber-reinforced compos-

ite are listed in Sec. 1.10.1 for a fiber volume fraction V; = 0.6. Determine the 6 x 6 elastic stiffness
matrix [C] of the unidirectional fiber-reinforced composite in GPa.
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1.4 Consider the unidirectional fiber-reinforced composite whose elastic stiffness matrix [C] was
determined in Problem 1.3. The fibers are oriented in the 1-direction as shown in the figure below
where the angle 6 = 45°.

(a) Determine the components of the 6 x 6 elastic stiffness matrix (in GPa) in the x-y-z coordinate
system.

(b) If the composite material is subjected to a stress o, = 100 MPa (all other stresses are zero),
determine the strains in the x-y-z coordinate system in pe¢. Is the shear strain y,, = 0? If not,
provide a physical explanation for the shear strain when the material is subjected to a normal
stress.

(c) If the composite material is subjected to stresses o, = =100 MPa and 7, = 50 MPa (all other
stresses are zero), determine the strain energy density U in k] /m?



Mechanics of a Lamina

2.1 Plane stress assumption

Laminated composite structures (or laminates) are typically thin-walled structures that are composed
of multiple laminae. When a laminate is subjected to loads, the out-of-plane stress components 713,
723 and o3 in the laminae are much smaller than the in-plane stress components o, 0» and 712. We
therefore neglect the out-of-plane stress components when analyzing thin-walled laminated composite

structures. This is known as the plane stress assumption and can be formally stated as

o3=T3=T13=0 (2.1)

The plane stress assumption greatly simplifies the analysis since we need to calculate only the in-plane

stress components, namely the normal stresses o, 0» and the shear stress 715, shown in Fig. 2.1.

%,
l/ -
yd
. Y/ Sz T12

&
L= Z

Figure 2.1: Stresses acting on a lamina in plane stress

The in-plane strain components are obtained by setting the out-of-plane stress components o3, oy (i.e.,

13), and o (i.e., 713) to zero in the right hand side of Eqn. (1.77)

1 Y12

€1 E _lE_l 0 g1
V-
& (= —E%z 5 0[jo (2.2)
1
Y12 0 0 &5l lm2

where we have utilized the reciprocity relations (1.78) to relate the Poisson’s ratio vy to vy, i.e., vo1
= v12E>/Eq. In the plane stress assumption, the in-plane strains are related to the in-plane stresses
through the longitudinal Young’s modulus E1, the in-plane transverse Young’s modulus E», the in-

plane Poisson’s ratio vi, and the in-plane shear modulus G1;.
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It is important to note that although the transverse normal stress o3 is assumed to be zero, the
transverse normal strain €3 need not be zero since the in-plane normal strains €; and &, can cause a
Poisson’s contraction/extension in the thickness direction. In fact, the transverse normal strain €3 can

be obtained from (1.77) by setting out-of-plane stress components 713 and 73 and o3 to zero.
E3=——01— —0 (2.3)
2

A non-zero transverse normal strain €3 will cause the thickness of a laminated composite plane to
either increase or decrease depending on its sign. This effect is known as thickness distention. Typically,
we are primarily interested in the analysis of stress and failure rather than in the thickness distention
of composite laminates. While we recognize that the transverse strain may be non-zero, we typically
do not use Eqn. (2.3) in our analysis. If necessary, the transverse strain &3 can be calculated using (2.3)
after the in-plane stress components o and o> have been determined.

Equation (2.2) can be rewritten as follows,

£ Si1 Sz 0| [on
g¢=|S12 S»2 0]|{om (2.4)
Y12 0 0 Sesf (712

where the 3 x 3 matrix of compliances is the reduced compliance matrix [S], and

1 V12 1 1
S11=—=, S12=—"—"—, S22=—, Se6 = =— 2.5
u=gy Su=-pn S2= g 56 = oo (2.5)
The stress-strain relationship can be inverted
o Su Sz 0] (&
o =|[S2 S» 0 £ (2.6)
12 0 0 Ses] (712
and written in the following form
o1 Ou Qi 0 |[&
(=02 02 0 |)& 27)
12 0 0 Qes| (712

where the 3 x 3 matrix of stiffnesses is the reduced stiffness matrix [Q].
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The following expressions for the reduced stiffness are obtained by inverting the 3 x 3 reduced
compliance matrix analytically.

Szz Sll
Oon=————5, On=c—7"—"3
$11822 - $2, S11822 - §2, 2.8)
2=——""—">, Q="
S1182 - $3, Se6

The reduced stiffness can be expressed in terms of the engineering properties by substituting for the
compliance from Eq. (2.5) into Eq. (2.8). For example, the reduced stiffness Q011 has the following form,

S 1/E> Eq

On = 5 = = (29)
$11822 = 87, (E%) (Elz) _ (_%112) (_VE_zzl) 1-vipvon
Similarly, we can express all the reduced stiffnesses in terms of the lamina engineering properties as
follows
E E
On = —1, O» = —
1-vi2van 1-vipvo
vi2En (2.10)
12
O = Cp— Oe6 = G12
— V12V21

It is important to note that the plane stress-reduced stiffnesses are not equal to the elastic stiffnesses,
i.e., Q;; # C;;j and it is wrong to write the stress-strain relationship for plane stress as follows [2],

(2.11)

This is because the transverse normal strain &3 on the right hand side of Eqn. (1.43) does not equal zero

for a lamina in plane stress.

2.2 Off-axis lamina

In general, fiber-reinforced laminated composite structures are made of multiple layers, each with
its own specific fiber orientation. Typically, the fiber orientations are specified relative to fixed global
structural coordinate system. The global or structural coordinate system is represented by x-y-z and
the lamina principal material coordinate system is represented by 1-2-3 as shown in Fig. 2.2.
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y

A

Figure 2.2: An off-axis lamina showing the global and principal material coordinate systems

2.2.1 Stress and strain transformation in 2D

When analyzing laminated composite structures, it is often necessary to transform stresses from the
structural coordinate system to the lamina principal coordinate system and vice versa. For example,
the stresses obtained using laminate analysis in a global structural coordinate system need to be
transformed to the principal material coordinate system when performing failure analysis.

The 2D stress transformation relations for a lamina in plane stress are obtained from the 3D stress

transformation relations by setting o3 = 723 = 713 = 0 in Eqn. (1.29),

0-1 O-x O-_x 0-1
=Ty ¢, Joyt=[Tel " o (2.12)
T12 Txy Txy T12

where in the case of plane stress, the stress transformation matrix (1.37) and its inverse reduce

to
m%  n? 2mn m?2  n? —2mn
[T,1=| n2 m?2 =2mn|, [To’]_l =|n?2 m? 2mn |, (2.13)
—-mn mn m?—n? mn -mn m%-n?

Similarly, the following strain transformation relations for the in-plane strain components are obtained
from Eqn. (1.33)

e2p=[Teliey t, {&y (=Tl 1 & (2.14)
Y12 Yxy Yxy Y12
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where the strain transformation matrix (1.38) and its inverse reduce to

2 2 2 2

m n mn m n —mn
[Te]=| n? m? —mn |, [Telt=|n? m? mn (2.15)
—2mn 2mn m?—n? 2mn —2mn m?% - n?

2.2.2 Off-axis elastic stiffnesses

In this section, we derive the off-axis stiffness that relate the strains and stress in the global coordinate
system. We begin with the stress-strain relationship (2.7) in the principal material coordinate system

o1 &1
o = 1014 & (2.16)
T12 Y12

The stresses and strains in the principal material coordinate system are expressed in terms of the
stresses and strains in the global coordinate systems using Eqns. (2.12) and (2.14) to obtain

Oy &y
[To]y oy 1 = [QlITe] &y (2.17)
Txy Yxy

Next, we premultiply both sides of (2.17) by the inverse of the stress transformation matrix [T, ] to

obtain
(0" Ex Ex
oy ¢ = To) 7 OIT:] ] &y ¢ =[0]1 &y (2.18)
Txy Yxy Yxy

where [Q] = [To]'Q1IT:] = [T:]T[Q][Te] is the off-axis reduced stiffness matrix that relate the
stresses to the strains in the global coordinate system. Eqn. (2.18) can be written in the following

form

Ox gn 212 §16 Ex
oy (=912 2 Qa|) & (2.19)
Txy O16 Q2 Qes) (¥xy

where Q-j are the off-axis stiffnesses that are obtained by taking the product of [T:]?, [Q] and [T.].
The off-axis stiffnesses can expressed in terms of the stiffnesses in the principal material coordinate
system and the angle 6 as follows,
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011 = Qum®* +2(Q12 +2Qe6)m°n* + Qoon’®

012 = (Q11 + Q2 — 4Qee)n°m* + Q1o (n* +m*)

016 = (011 — Q12 — 2Q¢6)nm’ + (Q12 — Q22 +2Q66)1°m
0y = Qun* +2(Q12 +2Qe6)n°m* + Qom’*

026 = (011 — Q12 — 20¢66)n°m + (Q12 — Q22 +2Qe6)nm°
O¢6 = (011 + 022 — 2012 — 20¢6)°m” + Qg (n* + m*)

(2.20)

where m = cos§ and n = sin 6.

2.2.3 Off-axis elastic compliances

Next, we derive the off-axis compliances that relate the stresses and strains in the global coordinate
system. We begin with the stress-strain relationship (2.4) in the principal material coordinate system

€1 (ox]
& ¢=[S]{ o (2.21)
Y12 T12

The strains and stresses in the principal material coordinate system are expressed in terms of the strains
and stresses in the global coordinate systems using Eqns. (2.14) and (2.12) to obtain

&y Oy
711 & (= [SUTo] 0y 22)
Yxy Txy

Next, both sides of (2.22) are premultiplied by the inverse of the strain transformation matrix [T] to

obtain
Ex Ox Oy
ey = [T SITo14 oy ¢ = [S]4 oy (2.23)
Yxy Txy Txy

where [S] = [T:]7Y[S][Ts] = [To]" [S][T,] is the off-axis reduced compliance matrix that relates the
strains to the strains in the global coordinate system. Eqn. (2.22) can be expressed in the following

form

Ex S S12 S| [ox
gy (= [S12 S22 S| 0y (2.24)
Yxy S16 S26 Ses| (Txy



2 Mechanics of a Lamina 31

where S;; are the off-axis compliances that can be determined from the reduced compliances in the
principal material coordinate system and the fiber orientation 6 as follows

S11 = Spumt + (2810 + S66)m2n2 + Spont

S12 = (S11+ S22 = Se6)n*m” + S1p(n* +m*)

S16 = (2811 — 2812 — See)nm® + (2512 — 2823 + See)n°m (2.25)
Sy = Syunt + (2812 + S66)112m2 + Spom*

S26 = (2511 — 2812 — Se6)n’m + (2812 — 2822 + Se)nm®

§66 = 2(2511 + 2522 — 4S12 - S66)n2m2 ar 566(114 ar m4).

EXAMPLE 2.1

Consider an off-axis IM7-8552 unidirectional lamina that is subjected to a normal stres o, = 100 MPa.
If 6 = 30°, determine the strains ey, &, and y.,.

Ex O 48.26 -19.44 -63.16 100
gy (=SB0 oy {=|-1944 9791 -22.83/1072Pa’-{ 0 {10°Pa
Vx Tz -63.16 -22.83 138.47 0
g ’ (2.26)
4826
=1-1944 ¢+ 107°
-6316
That is, the strains in the global coordinate system are,
ey =4826ue, &, =-1944pue, i, =-6316 urad (2.27)

It is observed that an off-axis lamina subjected to a normal stress o, will not only elongate in the
x-direction and contract in the y-direction but it will also shear in the x-y plane as shown in Fig. 2.3
due to the non-zero shear strain y,,. This is referred as extension-shear coupling. The direction and
magnitude of shear will depend on the fiber orientation 6.

O e 2

g

X

Figure 2.3: Response of an off-axis lamina to a normal stress o
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It can be similarly shown that an off-axis lamina that is subjected to a shear stress will exhibit normal
strains due to shear-extension coupling.

2.3 Lamina analysis procedure

Strains in Strains in principal
global coordinates material coordinates
Ea T.]
Ey »
Yoy ) [ Ts ]—]

(S| @1 i [S]]|l@]

Analysis

W

-~
|15 ] &
g2
-1
[ Ty ] T2
Stressesin Stresses in principal
global coordinates material coordinates

Figure 2.4: Concept map for the analysis of lamina. Adapted and modified from M.W. Hyer, Stress
Analysis of Fiber-Reinforced Composite Materials, DEStech, 2009

2.4 Engineering properties of an off-axis lamina

In this section, we obtain the engineering properties of an off-axis lamina in a global coordinate system
given the engineering properties (E1, E2, vi2 and G12) in the principal material directions and the fiber

orientation 6.

2.4.1 Young’s modulus E, and Poisson’s ratio v,,

To determine the Young’s modulus E, and the Poisson’s ratio vy, in the global coordinate system, we

apply a normal stress oy with oy = 7, = 0. The resulting normal strain &, is determined from the
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stress-strain relations (2.24) as
Ex = S110% (2.28)

The Young’s modulus E in the global coordinate system is defined as the ratio of the applied normal

stress oy to the resulting normal strain g, i.e.,

1
— (2.29)
&x  Sn

The off-axis compliance S11 can be expressed in terms of the engineering properties in the principal
material coordinate system and the fiber orientation 6 as,
§11 = S11m4 + (2512 + S66)m2n2 + S22n4

1 1 1
= —mt+ (—22 + —) m*n® + —n*
Eq E1 Gz E>

(2.30)

Substituting for the off-axis compliance S; from (2.30) into (2.29) give the following expression for the
off-axis Young’s modulus Ey,

E, = Ly (2.31)

m* + (ﬂ — 2v12) m?n? + %n‘l

G

Next, the off-axis Poisson’s ratio vy, is obtained by taking the negative of the ratio of the transverse
normal strain and the longitudinal normal strain when an off-axis lamina is subjeced to a longitudinal
normal stress.

When the off-axis lamina is subjected to a normal stress o, the resulting transverse normal strain &, is
obtained using the stress-strain relations (2.24) as

gy = S1207x (2.32)

The off-axis Poisson’s ratio is determined by taking the ratio of the transverse normal strain &, and the

longitudinal normal strain ¢, in Eqns. (2.32) and (2.28) ,

€ S S

Yoy = -2 = 212%x _ 212 (2.33)
Ex S110% S11

The off-axis Poisson’s ratio v, can be expressed in terms of the engineering properties in the principal

material coordinate system and the fiber orientation 6 using Eqns. (2.25) and (2.5),
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4 4 E, Ey 2.2
vlz(m +n )—(1+E—2—G—12)m n
Viy = (2.34)
y .
m4 + (EL — 215 | m2n2 + ELpt
G2 12 Ep

2.4.2 Young’'s modulus E,

The Young’s modulus E, in the global coordinate system can be obtained by applying a stress o, with

Ox = Txy =0.

oy Oy 1
&  Sxpoy  S»

(2.35)

The off-axis Young’s modulus E, can be expressed in terms of the engineering properties in the
g y P & g prop
principal material coordinate system and the fiber orientation 6 as follows

E, = k2 (2.36)

4, (E _ 2,24 E2 4
m+(G12 2v12)mn + 5N

2.4.3 Shear modulus G,,

The off-axis shear modulus G, is obtained by applying a shear stress 7., with the normal stresses
being zero (0, = oy = 0). The shear strain y,,, obtained from the stress-strain relations (2.24), is

Yxy = S66Txy (2.37)

The off-axis shear modulus G, is defined as the ratio of the applied shear stress 7., to the resulting

shear strain y.,. That is,

1
Goy= 2= (2.38)
Yxy  SeeTxy  Ses

The off-axis shear modulus can be expressed in terms of the engineering properties in the principal ma-
terial coordinate system and the fiber orientation 6 using Eqns. (2.25) and (2.5) , as follows

G
Gy = 12 (2.39)

m* + n* + 2m2n? [2553_112 (1+2vy2) + 255?_212 -1
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EXAMPLE 2.2
The variation of off-axis engineering properties with angle 6 is shown in Fig. 2.5 for IM7-8552

unidirectional carbon fiber-reinforced lamina.
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Figure 2.5: Variation of engineering properties with fiber angle 6 for a carbon fiber-reinforced
composite lamina

2.5 Tsai-Wu failure theory

When designing laminated composite structures, we need to make sure that the structure can withstand
the applied loads. When analyzing a composite structure, we first determine the stresses in each lamina
and then use a failure theory to determine the factor of safety. Several failure theories have been

proposed for composite materials. Here, we will use the Tsai-Wu failure theory.
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2.5.1 Failure criterion

The Tsai-Wu failure theory postulates that failure will occur when

2 2 2
g(01,02,112) = fioy + 202 + feTia + f1107 + 2205 + feeTiy +2f120102 + 2 fi601T12 + 2 f2602712 = 1 (2.40)
where, fi,..., f2¢ are the Tsai-Wu failure coefficients and o7, 0, 712 are the stresses in the principal

material coordinate system. The lamina will not fail if the left hand side is less than 1.

2.5.2 Determining the failure coefficients

It can be systematically shown that f5, fic and f2¢ are zero. Thus, failure will occur when

g(01, 02, 112) = fio1 + oo + fi107 + f03 + feeTiy +2f120102 = 1 (2.41)

The failure coefficient fi» needs to be obtained experimentally using biaxial loading tests. In the absence
of experimental data, it is normally assumed that fi, = —%\/ f11/22. The reduced Tsai-Wu equation is

AT+ oo+ 1102 + fo03 + fosTh — Vi1 fo2 102 = 1 (2.42)

The Tsai-Wu coefficients can be determined by applying the failure theory to uniaxial loading cases.
Since the Tsai-Wu failure criteria needs to be satisfied at failure, we obtain a system of equations that
can be solved to obtain the following expressions for the Tsai-Wu coefficients in terms of the strengths,

1 1 1 1 1

fi=—-—, fu= , h=—m7-—=,
Fi;,  Fic FiiFic Fy  Fye

1
fo= Jo6 = 7 (2.43)

v
Fy Fy. P

where Fy, is the longitudinal tensile strength, Fi. is the longitudinal compressive strength, F»; is the
transverse tensile strength, F,. is the transverse compressive strength and Fg is the in-plane shear
strength of the lamina in the principal material coordinate system.

2.5.3 Calculating the factor of safety using the Tsai-Wu failure criterion

Given a stress state (o7, 02, 712), the safety factor Sy is a stress multiplier that when applied to all
stress components will cause the material to fail. That is, failure will initiate when the stress state is
(Sfo1, Sy 02, S§712). Substituting into the Tsai-Wu failure criterion gives,

fi(Spon) + 2 (Spon) + fin (Sf0'1)2+f22 (Sf0'2)2 + fo6 (Slez)z —Vfinf (Spor) (Spon) =1 (2.44)
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This is a quadratic equation for the factor of safety S, which can be written as follows
aSh +bSyp—-1=0 (2.45)
where

2 2 2
a = f11oq + f205 + fecTi, — VJ11/22 01072,

(2.46)
b = fioy + foo.

It is noted that the coefficients a and b are dimensionless values. The quadratic equation (2.45) yields
two roots for S . The positive root, which is denoted as S, is the factor of safety for the actual stress
state

b+ Vb2 +4a

o (2.47)

Sta

The quadratic equation (2.45) also yields a negative root, denoted by Sr,, which is the hypothetical
factor of safety when the the signs of all three stress components are reversed. The factor of safety
Sr, corresponds to a situation when the loads are reversed thereby causing the stress components to
change sign.

-b—-Vb?+4a

o (2.48)

Spr =

EXAMPLE 2.3

Determine the factor of safety of an IM7-8552 unidirectional off-axis lamina that is oriented at 6 = 30°
and subjected to the stress state shown in Fig. 2.6.

50“IVIPa
~ 50 MPa

200 MPa

-

Figure 2.6: Stresses in the principal material coordinate system
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In order to analyze the failure of the lamina, we need to first determine the stresses in the principal

material coordinate system using the stress transformation matrix.

o1 o 3/4 1/4  +3/2] (200.0 205.8
ot =[TeB0)]{ay p=| 1/4 3/4 —+3/2|{50.0 p =14 44.20  MPa (2.49)
12 Toy) |-V3/4 V3/4  1/2 || 50.0 ~39.95

Thus, the stresses in the principal material coordinate system are o = 205.8 MPa, 0 = 44.20 MPa and
712 = —=39.95 MPa as shown in Fig. 2.7.

T12 = 39.95 MPa
o, = 205.8 MPa

0, = 44.2 MPa

Figure 2.7: Stresses in the principal material coordinate system

Next, the Tsai-Wu failure coefficients are determined using Eqn. (2.43) and the lamina strengths listed
in Eqn. (1.89).

fi=-2179%x10"Pa7!, f£;=2179%x10""Y Pa?, f, =9.286x10"° Pa™!

(2.50)
fro =7.143x 10" Pa=2, fss =1.235x1071¢ Pa~2
The coefficients a and b are determined from Eqn. (2.46),
a= fl1o; + 05 + fesTiy — \ fi1.fo2 10 = 0.310 251)
b = fio1 + froo =0.366 .
Next, the factor of safety Sy, for the actual stress state is determined using Eqn. (2.47),
-b+Vb2+4
S = % ~1.30 (2.52)

In this example, the transverse normal stress o is tensile. Since a unidirectional fiber reinforced
composite has a low tensile strength F>, in the transverse direction, the transverse tensile stress

contributes to the low factor of safety.



2 Mechanics of a Lamina 39

The factor of safety S, for a reversed-in-sign state of stress is

—b-Vp2+4
Spr= T” = 248 (2.53)

The magnitude of the factor of safety S, is larger than S, due to the compressive transverse normal

stress o0» when the stresses are reversed.

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Use the

Tsai-Wu theory for failure analysis.

2.1 Consider an off-axis unidirectional carbon fiber-reinforced composite lamina with the fibers
oriented at 6 = 60° and subjected to the stress state shown in the figure below.

10 MPa
——= 5 VIPa

20 MPa

Determine,

(a) the off-axis compliance matrix [§(60°)] and the stiffness matrix [Q(60°)].
(b) the strains ¢y, €, and vy, in the global coordinate system.
(c) the strains &1, &7 and 17 in the principal material coordinate system.

2.2 Consider a woven carbon fabric-reinforced composite lamina whose 1-direction (i.e., the warp

direction) is oriented at an angle of 6 relative to the x-axis.
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(a) Plot the off-axis engineering properties properties E,, Ey, G, and vy, as a function of the
fiber orientation 6 over the range —90° to 90°. Calculate the percent change in G, and v, for
a fiber orientation of 45° compared to 0°.

(b) Plot the off-axis stiffness 014 and compliances S17 and Sgg as a function of the fiber orientation
0.

(c) Do the variation of the engineering properties and compliances make sense? Explain your

reasoning.

2.3 Consider a tensile specimen of a unidirectional carbon fiber-reinforced composite with a rectangular
cross section of width 25 mm and thickness 4 mm. The fibers are oriented at 6 = 30° to the

longitudinal edge and the specimen is subjected to an axial force of 10 kN.

(a) Determine the factor of safety Sy,. What is the maximum tensile force that can be applied to
the specimen?

(b) Calculate the factor of safety S¢,. What does the magnitude of Sy, tell us in this application?
Why are the magnitudes of Sy, and Sy, different?

(c) Obtain the factor of safety S, when the fibers are oriented at § = 60° to the longitudinal edge
of the specimen. Will the specimen be able to withstand the load?



PART II: THE CLASSICAL LAMINATION
THEORY AND ITS APPLICATIONS



Classical Laminated Plate Theory

3.1 Kinematics of deformation: The Kirchhoff Hypothesis

Consider an N-layer laminated plate that is initially flat as shown in Figure 3.1. A global x-y-z Cartesian
coordinate system is introduced in which the x-y plane coincides with the geometric mid-surface of the
plate. The laminated plate is subjected to loads and it’s deformation is quantified by the displacements
u,v and w of each point in the x, y and z direction, respectively.

X yi

° = )
,;,77 Lamiréce

mid-surface

Figure 3.1: Schematic of a laminated composite plate

The layers or laminae are numbered from 1 to N starting from the bottom as shown in Figure 3.2. The z
coordinate specifies the location of a point in the thickness direction relative to the mid-surface.

z
Zn =HI2

y——

7 AN
e

layer N Oy na
53
z=-H/2
A I hy, layerk 8,
I layer 1 61

Figure 3.2: Section of a laminate that shows the numbering and orientation of the laminae

The k™ lamina extends from zj to zx41 in the thickness direction and has a fiber orientation of 6y
relative to the x-axis. The thickness of the k' lamina is hx = zx41 — zx and the total thickness of the

laminate is H.
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The deformation of the laminated plate is analyzed using the Classical Laminated Plate Theory (CLPT)
which is based on the Kirchhoff hypothesis. The fundamental assumptions of CLPT are:

1. The displacements are small compared to the thickness of the plate.

2. Material line elements that are straight and perpendicular to the mid-surface before deformation
can rotate but they remain straight and normal to the mid-surface after deformation as shown in
Fig. 3.3

3. The length of material line elements that are perpendicular to the mid-surface remain unchanged.

VA VA

X

Figure 3.3: Kirchhoff assumption for the deformation of a classical laminated plate

Since the displacements are small in keeping with Assumption 1, the intensity of deformation is
characterized by the infinitesimal strains. The corresponding strain-displacement relations are

ou ov . ow
Ex = 7 Ey =7, =
ox Y 9y <0z (3.1)
_6u+6v _8u+8_w _@_Fa_w )
7xy - ay axi 7)62 - aZ ax 7 yyz - aZ ay
Assumption 3 implies that the transverse normal strain ¢, is zero, i.e.,
0
&, = Y _o (3.2)
0z

which when integrated with respect to z gives the following general form for the transverse displace-
ment,
w = Wo(x/y/f) (33)

The general form for w indicates that the transverse displacement can vary as a function of the in-
plane coordinates x, y, and time ¢, but it is independent of the z coordinate. In other words, all points
through the thickness of a laminated plate experience the same transverse displacement w,(x,y,t)
under externally applied loads. This is a direct consequence of the Kirchhoff assumption that the length

of the transverse normals remain unchanged.

Assumption 2 implies that the transverse shear strains are zero. Equation (3.1) in conjunction with (3.3)
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gives,
ou Jw,
Vxz = 5ot =0
dz  0x (3.4)
c')_u B _Bwo )
dz  Ox

which when integrated with respect to z gives a general form for the displacement in the x direction

u= —Z% +uy(x,y,t) (3.5)
Ox

where u,(x, y,t) is an arbitrary function of the in-plane coordinates x,y and time .

Similarly, by setting the transverse shear strain y,, in (3.1) to zero, we obtain the following general
form for the displacement v(x, y, t),

dw,
v =222 4y, (x,y, 1) (3.6)
dy

where v, (x, y, t) is an arbitrary function of the in-plane coordinates x,y and time z.

In summary, the general forms of the displacements based on the Kirchhoff assumptions can be
expressed as follows

Owo(x,y,t
M(x,y, Z, t) = uo(x,y, t) - Z%
V0,3, 2,8) = Vold, ¥, 1) — ZW (3.7)

W(-xr Y, 2, t) = WO(x/ Y, t)

The deformation kinematics of the classical laminated plate theory is illustrated in Figure 3.4. Let’s
consider a material line element AB that is initially perpendicular to the mid-surface. After the loads
are applied, segment AB rotates in the x-z plane but remains normal to the deformed mid-surface. The
slope of the deformed mid-surface is denoted by the angle @, where

a/_c?wo
T ox

(3.8)

Since segment AB remains perpendicular to the deformed mid-surface (Assumption 2), it rotates
counterclockwise by an angle a,. If we consider point C that is located at distance of z from the
mid-surface, its horizontal displacement equals the horizontal displacement of the mid-surface minus

a displacement in the negative x-direction due to the rotation of the normal. In other words,

ow,

Ox

U=Upg—2Ax = Uy — T

(3.9
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Figure 3.4: Kinematics of deformation based on the Kirchhoff Hypothesis

3.2 Laminate strains

The following expressions for the in-plane strains in a laminated composite plate are obtained by
substituting the displacements u, v and w from Eqn. (3.7) into the strain-displacement relations (3.1)

_Ou _du, 0w,
Tox ax ox?
_Ov v, 9w,
oy T oy Ty

Ex

1
L O[Oy ) (B 0P, o
Yay = dy dx |\ dy Z(?yax 0x Zax(?y
ou, v, B 3w,
Sy ox 0x0y
The in-plane strain components can be expressed in the following array form
Ex &9 Kx
ey (=&Y (2 Ky (3.11)
Yxy ng Kxy
where &9, £ and y{, are the mid-surface strains,
ou ov Ju, Ov
0= 2 g2=—"2 40 =2 2 3.12
ExT o &y Oy Yy dy e (312)
and «y, ky and «,, are the mid-surface curvatures,
0w, 0w, 9w,
X = — , = ——/ X = —2 3.13
CT e T T T gy o1
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It is noted from (3.11) that the strain components have a linear variation in the thickness direction. The
strains &%, &) are the normal strains and 7, is the in-plane shear strain experienced by an element
on the mid-surface at z = 0. The quantities x, and «, are the curvatures of the mid-surface in the
x- and y-directions, respectively. The shapes of the deformed mid-surface corresponding to positive

curvatures «, and «,, are shown in Fig. 3.5.

Ve

Positive curvature k, Positive curvature k,,

Figure 3.5: Mid-surface curvatures in the x and y directions

The quantity «., is a twisting curvature. The shape of the mid-surface corresponding to a positive
is depicted in Fig. 3.6.

Positive twisting k.,

Figure 3.6: Mid-surface twisting curvature

3.3 Laminate stresses

The strains at any location within a laminate can be calculated using Eqn. (3.11) if the mid-surface
strain £¢, £ and ¢, and curvatures «y, ky and kxy are known. Since every point within the laminate
is assumed to be in a state of plane stress, the stresses at a distance z from the mid-surface can be
determined from the strains at that location using the plane stress reduced constitutive equations (2.19)
for an off-axis ply.

ox(2) &x(2)

ay(2) ¢ = [0(2)]] &y(2) (3.14)

Tay(2) Yxy(2)
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where [0(z)] is the reduced stiffness matrix at z. The in-plane stresses can be directly related to the
mid-surface strains and curvatures by substituting for the strain from (3.11) into (3.14)

ox(2) &9 Ky
oy(2) [ = [0 &9t +2| &y (3.15)
TX}’(Z) ’ygy Kxy

The reduced stiffnesses Q; ; depend on the lamina fiber orientation 6. In the case of a laminated
composite plate, each lamina has its own fiber orientation 6, where the subscript k denotes the
layer number. The fiber orientation and stiffnesses are assumed to be constant with each lamina.
Therefore, the reduced stiffnesses at a point whose thickness coordinate is z in layer k can be written as
Q- (@) = Q(Jk) where Q(Jk) are the reduced stiffnesses for the k™ lamina. The in-plane stresses at that

point are,

(k)

_
ox(2) On Q1 Qs €9 Kx
oy (2) =101 O»n 0% £9 (+29 Ky (3.16)
Txy(2) Q16 Q2% Ues Ve Kxy

Since the reduced stiffnesses have a piecewise constant variation and the strains have a linear variation
in the thickness direction, the stresses exhibit a piecewise linear variation through the thickness of the

laminate.

3.4 Force and moment resultants

When analyzing laminated composite plates, the net loads acting on an element are represented by
force and moment resultants. The in-plane force resultants are defined as the resultant forces per width
and are obtained by integrating the stresses through the thickness of the laminate.

H)/2
Nx=/ ox (2) dz

H/2

H/2
Ny = / oy (2)dz (3.17)
~H/2
H/2
Nyy = / Tyy (2) dz
~H/2

The in-plane force resultants are by definition forces per unit width and have units of N/m The force
resultants N, and N, represent the normal forces acting on the element in the x- and y-directions,
respectively. The force resultant N, represents the shear force acting parallel to the edges. The force
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resultants are distributed forces acting the edges of an element as illustrated in Fig. 3.7(a) although
they are usually represented by single arrows as shown in Fig. 3.7(b) for the sake of convenience.

// / / L.
. zy _/f}'\;‘y zZy N,%
—// ., Vs / ., /Lx
e e / 7

(@) ()

N, N

Figure 3.7: Force resultants acting on an element

The three integrals in (3.17) can be represented an integral of a column array of in-plane stresses,

Ny HI2 (0 (2)
Ny ¢ = oy (z) dz (3.18)
ny -H/2 Txy (Z)
The moment resultants are defined as
M e Ox (Z)
My { = oy (2) (2dz (3.19)
Mxy -H /2 Txy (2)

where M, and M, are the bending moments and My, is the twisting moment that act on the edges of
element as shown in Fig. 3.8. The moments resultants are by definition moments per unit width and
have units of N-m/m.



3 Classical Laminated Plate Theory

49

Figure 3.8: Moment resultants acting on an element

3.5 Load-deformation relations

In this section, we relate the force and moment resultants acting on an element to its mid-surface
strains and curvatures. The stresses from (3.15) are substituted into the integral for the force resultant
(3.18) and written as the sum of two terms (3.14), (3.15) and (3.18):

H/2 H/2

Nx Ox (Z) ) Ex (Z)
Ny ¢ = oy (z) pdz = a (Z)] gy (2) pdz
ny —-H/2 Txy (Z) -H /2 Yxy (Z)
H)/2 — 89( Ky
- 0[]0 t+2 x [ |az (3.20)
~H /2 ng Kxy
H2 o H/2 Kx
= (/ [Q (z)] dz) e) r+ (/ [Q (Z)] zdz) Ky
—H/J2 h —H/2
7xy Kxy

The first term in (3.20) captures the contribution of the mid-surface strains and the second term captures

the contribution of the mid-surface curvatures to the force resultants. Equation (3.20) can be written

as,

Ny 82 Ky

Ny ¢ =[A]{ €% ¢ +[B]1 &y (3.21)

ny ng Kxy
where the matrices [A] and [B] are defined as follows,

H2 H/2

[A] = / 0]dz . 1B1= / 0| zdz (3.22)
-H)/2 -H/2
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Next, substituting for the stresses from (3.15) into the integral for the moment resultant (3.19) and
integrating yields

M Hr ox (2) iz ) ex (2)
My ¢ = oy (2) (zdz= 0 (z)] gy (2) (zdz
My -H /2 Txy (2) —-H /2 Yxy (2)
H)/2 89( Ky
= Q@] &0 t+ed x |eez (3.23)
—-H /2 79(); Kxy
0
H2 &x H2 Kx
= (/ [Q (z)] z dz) 88 + (/ [Q (Z)] 72 dz) Ky
—H/2 0 —H/2
yxy Kxy

where the first term captures the contribution of the mid-surface strains and the second term captures
the contribution of the mid-surface curvatures to the moment resultants. Eqn. (3.23) can be written in
the following form

M, 82 Ky
M, ¢ =[B] ag +[D] 1 «y (3.24)
Mxy 79cy Kxy

where matrix [B] has been previously defined in (3.22) and matrix [D] has the following definition

[D] = / ://22 |0(2)] 24z (3.25)

Eqgns. (3.21) and (3.24) for the force and moment resultants can be combined into a single matrix
equation as follows

N, (A1 A Age Bin B Big| | &Y
N, A Ap Ay B By B 83
Ao _ A1e Azs Ass Bis B Bes 7/90’ (3.26)
M, Bi1 Bz Bis | Du D2 Dis| | Kk«
M, Bia B By | D1z Dx Dog| | Ky
M,y Bis By Beg D1¢ Dz Des| | kxy

where the 6 X 6 matrix consisting of A;;, B;; and D;; is known as the [ABD] matrix. A;; are the laminate
extensional rigidities that relate the mid-surface strains to the force resultants. D;; are the laminate
bending/flexural rigidities that relate the curvatures to the moment resultants. B;; are the laminate
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bending-extension coupling rigidities that relate the curvatures to the force resultants and the mid-
surface strains to the moment resultants. Since the off-axis stiffness matrix [Q] is symmetric, the

laminate stiffness matrices [A], [B] and [D] are symmetric as well.

Eqn. (3.26) can be expressed compactly as

N A B| (&Y
H = {—H H (3.27)
M B | D| |«

where {N}, {M}, {€°} and {«} are 3 x 1 column arrays of force resultants, moment resultants, mid-

surface strains and mid-surface curvatures, respectively.

3.5.1 Computing the ABD matrices

The calculation of the laminate stiffness matrices [A], [B] and [D] requires us to perform the through
thickness integrations in Eqns. (3.22) and (3.25). Since the kth layer extends from zx to zx+1 and [0(2)]
is piecewise constant (i.e. constant in each layer or lamina of the laminate), the integrals can be
transformed into a summation over the layers. The stiffness matrix [A] is integrated as

(4] = /H/Z [Q (Z)] e o Z /‘Zk+1 (k)

~H/)2

3.28
N (k) [ Tkl (3.28)
-2l [
k= %
Thus, the stiffness matrix [A] can be calculated through the following summation,
N
__q (k)
(A=) (zrn - 20 0] (3.29)
k=1

Note that z;.1 — zx is the thickness & of lamina k. Therefore, the stiffness matrix [A] can be determined
through a layer by layer summation of the product of the lamina thickness i and off-axis stiffness
matrix [Q] ).

The laminate stiffness matrices [B] and [D] can be similarly obtained through a summation over all

the layers
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51-1 3 (-) 2]

o N (3.30)
21=3 2 (4 -) 2]

k=1

The individual terms of the [A], [B] and [D] matrices can be evaluated separately if needed. For

example,

1< —(k)
EZ(ZM 2o (3.31)

3.5.2 Inversion of the load-deformation relations

If the force and moment resultants are know, the mid-surface strains and curvatures can be obtained

AR ERE M

where the 6 X 6 [abd] matrix is the inverse of the 6 X 6 [ABD] matrix, i.e.,

ab_
T dl

The [abd] matrix is a 6 X 6 matrix of laminates compliances. The matrices [a] and [d] are symmetric.

by inverting (3.27).

A B
B D

a b
pT d

A B|

. (3.33)

However, the matrix [b] need not be symmetric.

3.5.3 Elastic Couplings

The first three rows of (3.32) relate the mid-surface strains to the force and moment resultants

&Y a1 app aie| | N bi1 b1z big| | My
88 =lap ax ax|y Ny (+|ba bn by|y M, (3.34)
2 aie az aes| (Nxy be1 bex bes| \Mxy

¥
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while last three rows of (3.32) relate the mid-surface curvatures to the force and moment resul-
tants

Kx b11 bx ber| [ Nx din dip dig| | My
Ky (= |b12 b be|\ Ny (+|di2 da da|§ M,y (3.35)
Kxy bis bae bes| | Nxy dig dos des| | Mxy

Here a;; are the laminate extensional compliances that relate the force resultants to the mid-surface
strains. d,; are the laminate bending/flexural compliances that relate the moment resultants to the
mid-surface curvatures. b;; are the laminate bending-extension coupling compliances that relate the
moment resultants to the mid-surface strains and the force resultants to the curvatures. The laminate
compliances capture the response of a laminated composite material to applied loads. Laminated
composite plates can exhibit behaviors that are not seen in isotropy plates.

In plane shear-extension coupling
The compliances a1 and ays capture the influence of the in-plane axial forces on the in-plane shear

strains and the in-plane shear forces on the in-plane normal strains. For example, if a1s # 0, an axial
0

X

load N, will induce a shear strain 39, . Similarly, a shear load N, will induce a normal strain &

Bending-twisting coupling
These compliances d1 and dag capture the influence of the bending moments on the twisting curvatures
and the twisting moment on the bending curvatures. For example, if dis # 0, a bending moment M,

will induce a twisting curvature «,, and a twisting moment M,, will induce a bending curvature «,.

Bending-extension coupling
The compliances b;; couple the moment resultants to the mid-surface strains and the force resultants

to the curvatures. For example, if b1; # 0, N, will induce a curvature k. and M, will induce an in-plane
0

x*

strain &

3.6 Laminate nomenclature and special types of laminates

3.6.1 Stacking sequence

In this section, we introduce the notation for specifying the fiber orientations of a laminate, known as
the stacking sequence. The stacking sequence is specified in the form of an array of values enclosed in
square brackets that contains the fiber orientations (in degrees) of the individual layers separated by the
slash (/) symbol starting with the bottom layer and ending in the top layer, i.e., [01/602/- -+ /0k/--- /ONn].
Fig. 3.9 shows a representative 5-layer laminate that has stacking sequence of [0/45/90/-45/0].
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Figure 3.9: Representative [0/45/90/-45/0] ply stacking sequence

We use the following convention when specifying the stacking sequence.

1. In the case of laminates that are symmetric about the mid-surface, known as symmetric laminates,
the stacking sequence of the bottom half of the laminate is specified followed by a subscript S. For
example, [45/-30/0/0/-30/45] is abbreviated as [45/-30/0]s. Symmetric laminates with an odd number
of layers are listed with a bar over the center layer to indicate that it straddles the mid-surface. For
example,[0/45/90/45/0] is abbreviated as [0/45/90]s.

2. Adjacent layers with fiber orientations of +6 followed by —6 are abbreviated as +6. For exmaple, a
stacking sequence of [0/30/+45] is equivalent to [0/30/45/-45]. Similarly, adjacent layers with fiber
orientations —6 followed by +6 are abbreviated as 6, e.g. [0/30/+45] is equivalent to [0/30/-45/45].

3. A subscript n is used to designate adjacent layers with the same fiber orientation. For example,
[-30/90/90/45/0/-45] is abbreviated as [-30/90,/45/0/-45]. Repeated groups of layers are listed in
parenthesis with a subscript n, e.g., [45/-45/0/45/-45/0] is abbreviated as [(+45/0),].

3.6.2 Laminate stiffness for special types of laminates

Symmetric laminates

A laminate is said to be symmetric when for each layer on one side of the mid-surface, there is a
corresponding layer on the other side with identical thickness, properties and orientation. In the case
of symmetric laminates, the contributions of layers on opposite sides of the mid-surface to the laminate
stiffnesses [ B] cancel out and we obtain

Bij =0 or [B] = [0]

Balanced laminates

A laminate is said to be balanced if for every lamina whose fibers are oriented at a certain angle 6,
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there is another lamina oriented at —6 somewhere in the laminate, e.g. [45/-30/0/-45/30]. In the case
of balanced laminates,
A1 = A2 =0

Cross-ply laminates
Cross-ply laminates have fibers oriented at either 0° or 90°, e.g., [0/90]. Since Q14 = Q¢ = 0 for each
layer, A1g = A6 =0, Big = Bog =0 and D16 = Dy = 0.

Quasi-isotropic laminates
Quasi-isotropic laminates are special type of symmetric laminates with in-plane stiffness that behaves
like that of an isotropic plate. That is,

A — A

Al1=An , Ais=A%=0 , Ag= >

Examples of quasi-isotropic laminates include [0/90/45/-45]¢ , [0/60/-60]s.

3.7 Laminate analysis procedure

Mid-surface Strains in Strains in principal
deformation global coordinates material coordinates

(e()} = {e") + 2 () | %EZ;
2 Ey Z
Ume)) @

N
[abd] [ABD] Laminate [ 5'] [Q] Lamina [ S] [ Q ]
Analysis Analysis
y v \ |

)\ [ Failure

Ny M, 1 {N} = /{O’} dz ( 0 (2) [Ta] criterion

Ny M, oy(2)

Ny, ) |0, )] M} = /{U}Zdz Tay(2) (7,1

Applied Stresses in Stresses in principal Safety factor
Loads global coordinates material coordinates

Figure 3.10: Concept map for the analysis of laminated composites. Adapted and modified from M.W.
Hyer, Stress Analysis of Fiber-Reinforced Composite Materials, DEStech, 2009
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3.8 Analysis of laminates subjected to in-plane loads

3.8.1 Thin laminated tubes subjected to an axial force and a torque

Consider a thin laminated composite tube with a symmetric ply layup. It is assumed that the mean
radius R is much larger than the wall thickness H. The tube is subjected to an axial force P and a torque

T, as shown in Fig. 3.11.

Figure 3.11: A thin-walled laminated tube subjected to axial and torsional loads

In the case of a thin-walled tube, we can treat an element as a flat laminate and relate the force and

moment resultants to the applied loads as follows

P T

:27T_R , ny:m , Ny=0 , Mx:My:MxyZO (336)

X

The force and moment resultants can be substituted into (3.34) and (3.35) to obtain the mid-surface
strains {so} and curvatures {«}. Subsequently, we can calculate the stresses using (3.15) and analyze
the safety factor using the Tsai-Wu failure theory.

3.8.2 Laminated composite pressure vessels

Consider a thin-walled pressure vessel with a mean radius R and wall thickness H that is subjected

to an internal pressure p as shown in Fig. 3.12. The pressure vessel is assumed to have a symmetric
layup.

The in-plane force resultants in the axial and hoop direction are obtained using static equilibrium.

Ne=22 , Ny=pR , Ny=0 (3.37)
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Figure 3.12: A thin-walled laminated pressure vessel with rigid end caps, subjected to an internal
pressure

The moment resultants are assumed to be zero.

My=My=Mg=0 (3.38)

3.9 Analysis of laminated composite beams

Consider a laminated beam of length L and width W. The thickness H of the laminated beam is
assumed to be much smaller than the length L. The beam is assumed to have a symmetric layup to

preclude bending-extension coupling effects.

liili T 1
M A
Ex =3 :
d VAN .
/
M(' >M

Figure 3.13: A thin laminated beam in bending
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3.9.1 Stress analysis of laminated beams

As we would for a regular beam, we can draw the bending moment diagram and use it to determine
the bending moment M at the spanwise location of interest. The moment resultant M is the bending
moment per unit width. That is,

M, =-— )
7 (3.39)

The negative sign is introduce to account for the fact that the positive convention for the bending
moment M is opposite to that of the positive direction for M,. All other force and moment resultants
are zero, i.e., Ny = Ny = Ny, = 0,M, = M,, = 0. Next, we can evaluate the mid-surface strains and
curvatures and obtain the through-thickness variation of stresses.

3.9.2 Deflection of laminated beams

In the case of symmetric beam, the laminate compliance matrix [»] = 0 and (3.35) simplifies to

Kx dn dix dis MXO
Ky ¢ = |di2 don da M (3.40)

0
Kxy dig drs des M5

Therefore, the curvature «, in the spanwise direction,

diyM
kx =diMy = - W (3.41)
from which we can obtain the moment-curvature relationship
w
M = (—) - (—ky) (3.42)
dll ——
— beam curvature
bending rigidity

where W /dy; is the rigidity of the laminated beam. Therefore, we can replace the laminate beam with
an equivalent homogeneous beam with effective flexural modulus E’Z that is obtained by equating the
equivalent bending rigidity E]ZI to the effective rigidity W/dy; of the laminate where I = WH®/12 is the
moment of inertia of the equivlaent homgoeneous beam

— w — (1 w

from which we obtain the effective flexural modulus EZ
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= 12
X di1H3

(3.44)

Thus, the deflection of a laminated composite beam can be obtained by replacing the laminated beam
with a homogeneous beam of flexural modulus E‘Z and using the strength of materials expressions for

deflection.

EXAMPLE 3.1: Deflection of a laminated cantilever beam

Consider a laminated cantilever beam of length L that is subjected to a concentrated force P at the tip.

P

MDY

t"‘

Figure 3.14: Laminated cantilever beam

The tip deflection § is obtained using the beam theory formula by replacing the Young’s modulus E

by the flexural modulus EJ}(
P

(3.45)

X

where EZ can be determined from the bending compliance d1; and beam thickness H using (3.44)

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness / of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

3.1 Consider a [0/45] unidirectional carbon fiber-reinforced composite laminate. The laminate experi-
ences the following mid-surface strains and curvatures when subjected to certain loads: £2 = 1000 p,
ky =—-10m~! and Kxy =10 m~L. All the other mid-surface strains and curvatures are zero.

(a) Plot the through-thickness variation of the strain ey, £, and yy, (in ue)
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(b) Determine the stresses oy, o, and 7y, at the top and bottom surfaces of each lamina in the
global coordinate system and plot the through-thickness variation of the stresses o, oy and
Tyy (in MPa)

(c) Determine the stresses o, 0» and 11 at the top surface of the laminate in the material coordi-

nate system.

3.2 Consider a symmetric balanced laminate with known laminate stiffnesses A, ;, compliances a;; and
thickness H.

(a) Derive expressions for the effective in-plane laminate elastic moduli £y, Ey, ¥y and Gy, in
the x-y global coordinate system in terms of A;; or a;; and thickness H.

(b) Obtain the effective elastic moduli E, Ey, ¥, and G, of a [0/90/0] unidirectional carbon
fiber-reinforced composite in the x-y global coordinate system. Is E or E, larger and why?
How does G, compare with the shear modulus G of a lamina? Discuss your results.

(c) Considera [0/90/+45] ¢ quasi-isotropic laminate made of unidirectional carbon fiber-reinforced
plies. Calculate the elastic moduli Ey, Ey, ¥y, and Gy, in the x-y global coordinate system.
Does the laminate behave like an isotropic plate, i.e., is Ex = Ey and Gy = Ex/2(1+ vxy)? Are
the bending rigidities D11 and Dy, the same as is the case for isotropic plates?

(d) If you rotate the entire quasi-isotropic laminate considered in part (c) by an arbitrary angle «,
say 30°, do the elastic moduli Ey, Ey, 7xy and G, change? Do the bending rigidities D17 and
Dy, change after the laminate is rotated? You can check your answer by rotating all the plies
by an angle of 30°.

3.3 Consider a [+30]s thin-walled laminated tube made of woven fabric-reinforced plies. The tube has a
mean radius R = 5 cm and length L = 0.5 m. It is subjected to a torque of 7' = 2 kN-m and an axial

force of P = 20 kN. The x and y- directions are oriented parallel to the axial and circumferential

QLe

directions, respectively.

A

(a) Determine the midsurface strains and curvatures. Discuss their relative values and whether
they make sense.

(b) Determine the overall elongation (in mm) of the tube using the midsurface strain &) and
length L

(c) Derive an expression for the total twist of the tube (rotation of one end relative to the other)
using the mid-surface shear strain y?cy, the length L and the radius R. Use the obtained
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expression to calculate the total twist in degrees.

(d) Plot the through-thickness variation of the strain &, and stress components o, 7y, and 71».
Which layer(s) exhibit the largest shear stress 11?

(e) Plot the through-thickness variation of the factor of safety S;,. Determine the minimum
factor of safety S’;}la” and the corresponding layer(s).

3.4 Consider a cross-ply (i.e., 0° or 90° plies) laminated composite pressure vessel made of unidirec-
tional carbon fiber-reinforced laminae. It has a mean radius of R = 0.25 m and is subjected to an
internal gauge pressure of p = 1.25 MPa.

28

Ty

(a) Consider the case where the pressure vessel is made of a [0/90/0] cross-ply laminate. Calculate
the transverse normal stress o in the plies and compare it with the transverse tensile strength
F>;. Determine the factor of safety S;,. Will the pressure vessel be able to withstand the
internal pressure?

(b) Is there another symmetric, cross-ply lamination scheme that will give a higher factor of safety
than the one in part (a), preferably without increasing the weight? If so, specify the stacking
sequence, the corresponding safety factor and the reason why it has a higher factor of safety.

3.5 Consider a symmetric cross-ply laminated simply supported beam of solid rectangular cross-
section made of unidirectional carbon fiber-reinforced laminae. The beam is of length L = 20 cm

and width W = 5 cm. It is subjected to a net force of P =5 N at the mid-span as shown in the figure.

T 7Y
b

[

(a) If the beam has a [90/0]s stacking sequence, plot the through-thickness variation of the stress
components o7, 0> and the factor of safety S, at the location where the bending moment is
largest. Determine the minimum factor of safety S?’a" Where is the factor of safety the lowest
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(specify the layer and through-thickness location)? Can you explain why the factor of safety
is lowest at that location?

(b) Determine the mid-span deflection ¢ of the [90/0]s laminated beam considered in part (a).

(c) If the beam has a [0/90]s stacking sequence, determine the minimum factor of safety S}“a"
and compare it with the value obtained for a [90/0]s in part (a). Where is the factor of safety
the lowest? Can you explain why the factor of safety is lowest at that location?

(d) Compare the deflection of the [0/90]s beam considered in part (c) with the value obtained in
part (b) for a [90/0]s beam. Are the deflections significantly different? If so, can you explain
why?



Equations of Motion for a Plate

In this chapter, we will derive the equations of motion of a laminated composite plate in terms of the
force and moment resultants from the three dimensional equations of motion.

4.1 Analysis of laminated composite plates

Consider a laminated rectangular plate of length a in the x-direction and width b in the y-direction
as shown in Fig. 4.1. The laminated plate is composed of N laminae and has a total thickness H. It is
subjected to a distributed load of magnitude g(x, y, t) in the positive z-direction. The distributed load
can act either on the top surface (z = H/2) or the bottom surface (z = -H/2). The distributed load can
have a non-uniform spatial variation with respect to the in-plane coordinates x and y. In addition, the

load can vary with time 7 in the case of dynamic loading (e.g., forced vibration).

Figure 4.1: Rectangular laminated plate subjected to loads

In general, the force and moment resultants acting on element of a laminated composite plate vary
from point to point. When analyzing laminated plates, we use the equations for motion and boundary
conditions to determine the force resultants, the moment resultants, mid-surface strains and curvatures

at a location.

4.1.1 Transverse Shear Force Resultants

In addition to the in-plane force resultants N, Ny and N,,, and the moment resultants M,, M, and
M, defined earlier in Sec. 3.4, we define the transverse shear force resultants V, and V, as follows,

H/2 H/2
Ve = / TyzdZ, Vy = / Ty dz (4.1)
“H/2 —H/2
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The transverse shear force resultants V, and V) are the vertical forces per unit width acting on the
surfaces normal to the x and y-axes, respectively, as shown in Fig. 4.2.

v,y
A /
4 T 1 ' 1 /
[ ! Ve
Ay; Foy q(x,y,t) /_>

Ax

Figure 4.2: Shear force resultants acting on an element

4.2 Equations of motion for a laminated plate

4.2.1 Three-dimensional equations of motion

To derive the equations of motion of a laminated plate in terms of the force and moment resultants, we
start with the three dimensional equations of motion for an elastic body, namely [1]

80‘x 6Txy (?sz 821/{
ox " dy " 0z _pﬁ (4.22)
01cy 0oy 0Ty, 8%y

=p— 4.2b
ox dy * oz Far (4.2b)
aT)Cy 6Tyz 80’Z aZW

= 4.2
ox dy " oz For (4.2¢)

where p is the mass density of the material. Note that we have neglected body forces for the sake of
simplicity.

4.2.2 Equations of motion in terms of force and moment resultants

We can integrate the equations of motion through the thickness of a laminated plate to obtain the
equations of motion in terms of the force and moment resultants. Since the equations of motion are
satisfied at every point within a laminated plate, we can integrate them through the thickness of the
laminated plate and the resulting equations should also be satisfied.
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(a) Equation of motion in the x-direction

We integrate Eqn. (4.2a) through the thickness (i.e. with respect to z)

T e 9t 8 HIZ g2 P
Ox Txy Txz wQ
dz = R A 43
(8x+8y+az)z /H aﬂ(”“zax)z (43)
_H -H/2

2
H/2 52 H)/2 82 o H/2
_ 9o / pdz — ( WO) / pzdz (4.4)

9 H)/2 k) H/2
— dz+ — dz +
0x .[H/Z THET Gy ./H/z AT T g “H/]2 a2\ ox | Jup

Next, based on the definition of in-plane force resultants, we obtain

(9N avay (9 aWO
4.5
» M M zz aﬂ( — ) (4.5)

which reduces to the following equation of motion in terms of force resultants since there are no shear

stresses acting on the top and bottom surfaces of the plate, i.e., 7, (-H/2) = 7., (H/2) =0,

ONy ONyy 0%ug 3% (dwo
= I -h— |5 4.6
ax oy Vo 16t2(8x) 46
where /; are integrals that involve the density and are defined as
H/2 .
I; = / p(z)7'dz 4.7)
~H/2

The integrals /; can be written in array form fori =0,1,2 as

Iy H /2 1
L= / p(2)§zdz (4.8)
b -H /2 a

Physically, Iy is the mass of the plate per unit area (i.e. areal mass) and I, is known as "rotary inertia".
Since the density is usually constant for each layer, the integrals (4.8) can be evaluated through a layer

by layer integration and expressed as

G 1 X , ,
i _ (i+1) (i+1)
I; = E / prZdz = T+D g POk [zk+1 -2 (4.9)
k=1

We thus obtain the following expressions for Iy, I; and I,
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QJ|H
MZ

(zk+1 zi) (4.10)

I\JIH

N N
Iy = ;Pk (zk+1 — 2k) = ;thk/ I

kzlz: (Zk+1 )

The expressions for Iy, I1 and I, in (4.10) are valid for a hybrid laminate where each ply may have a
different density. In the case of laminate where all the laminae have the same density p, the integral
(4.7) for I; reduces to

H/2
_ i _ P (41 H/2
I; = ‘d7 = —— 411
l p[H/Z o (i+1)z |_H/2 (10
and we obtain
pa ° i 412
lo=pH, 1L =0, ©L-= 1121 if pr=p (4.12)

(b) Equation of motion in the y-direction
We Integrate (4.2b) through the thickness (i.e. with respect to z)

01xy 00y 07y 92 dwo
dz = -z—|d 413
/ (8x+c')y+c')z =), Far 0T ey | &13)
_H —-H /2

/2

Integrating term by term and using the definition of force resultants gives

Ny

v 0% (Ow
o Oyt D - tf atz( ayO) (4.14)

Since there are no shear stresses on the top and bottom surfaces, i.e. 7y, (-H/2) = 7y, (H/2) =0, we

obtain

ONxy ON, %y 92 (awo) (4.15)

0x ay
(c) Equation of motion in the z-direction
We integrate (4.2c) through the thickness (i.e. with respect to z)

T . om0 HIZ g2
T-
Txz T2 992 g = 02204, (4.16)
Ox dy 0z a2 or?

H/2
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Integrating term by term and using the definition of the shear force resultants in (4.1), gives

8Vx avy GZWQ
a—x+E+O'Z (H/Z) — 0y (—H/Z) = I() 812

(4.17)

The distributed load ¢(x, y, ) can act on either the top or bottom surface, as shown in Fig. 4.3.

UZ(H/Z) =q

LItteteeeeeeeeeees 0,(H/2) =0

0,(~H/2) = 0 A

Gz(_H/Z) =—q

Figure 4.3: Distributed load acting on the top and bottom surfaces of a laminate

If the distributed load is applied on the top surface then, o, (H/2) = g (x,y,t) and o (-H/2) = 0. On
the other hand, if the distributed load is applied on the bottom surface, then o, (-H/2) = —q (x,y,t)
and o, (H/2) = 0. In both cases, we obtain

oz (H/2) =0 (-H/2) = q (x,y,1) (4.18)

Substituting from (4.18) into (4.17) gives

v, V. 9?
x+_y+CI(x,y/f)=10 o

=z v 4.19
ox Oy or? (4.19)

(d) First moment of the equation of motion in the x-direction
We multiply (4.2a) by z and integrate with respect to z

H/2 do H/2 ot H/2 ot H/2 aZuO 62 awO
X zdz + "yd+/ id:/ ( ——(—))d 4.20
</—H/2 Ox o [H/z dy i —H]2 0z e _H/zp 012 Zatz Ox wdz ( )

from which it follows that,

o [H? 5 [HP H)2
— oxzdz+ — Tyyzdz + /
0x J_u2 0y J_H)2 —H/2

dZIIl

— (2Txz) = Taz

8%up 9% (dwy
0z

oz ap W) (4.21)

Evaluating the terms in equation (4.21) gives

0
OM, OMyy H 8%ug 9% (dwo
V=1 —— ==
ax Ay T ~H /2 Yoz " o2 ( ox )

(4.22)
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Since the shear stress 7., = 0 on the top and bottom surface, (4.22) reduces to
oM, O0M,, 82u0 02 (9W()
-V, =1 —hh— 4.23
ax  dy Yoz e \Tox (4.23)

(e) First moment of the equation of motion in the y-direction

Using a process similar to the one in (d), we multiply (4.2b) by z and integrate with respect to z to

obtain

(4.24)

a1‘4xy aMy (92\/'() (9 8w0
V.= —— —
ox - 0y y— A (Oy

4.2.3 Equations of motion for classical laminated plate theory

In the classical laminated plate theory, the governing equations are solved to obtain the three mid-
surface displacements, namely u,(x,y,z,t), vo(x,y,2,t) and w,(x, y, z,t), from which the mid-surface
strains, curvatures and through-the-thickness variation of stresses are obtained. The five equations of
motion, namely (4.6), (4.15), (4.19), (4.23) and (4.24), are reduced to a system of three equations for u,,

v, and w, by eliminating V, and V.

Differentiating equation (4.23) with respect to x and equation (4.24) with respect to y yields

2 02M, 2 2 (92
Vi _ My vy 0 (P, 8 (Pwo (4.250)
Ox 0x2 0x0y ax \ 02 or2 \ 0x2
aVy 0°Myy, 0*M 2 2 (92
Y _ v OMy 0 (Pvo) 97 (970 (4.25b)
dy 0x0y 0y? dy \ o2 012 \ 9y?
Substituting equations (4.25a) and (4.25b) into equation (4.19) gives
*M, 82Mxy o 9 62u0 8% (0%wg) 0*Myy
— + +
0x? axay Yox a2 ) " a2 8x2 0xdy (4.26)
My 9 (0w, 0 (0Pwo) Coyd) = 8%wo '
8y2 oyl a2 ) e\ g2 )TV T 00
from which it follows that
M, _*My, 0*M, aZWO 0% (dug , 9 8% (8*wy 0wy
9 + +q(x,y,1) =1, —|-h— + 4.27
a2 " Zaxay oy T4y =l thay ( ox (9y) 2972 ( ozt o) ¢
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Equations (4.6), (4.15) and (4.27) are the equations of motion for a laminated plate.

4.2.4 Equilibrium equations for classical laminated plate theory

In the case of static loading, the displacements do not vary with time. Hence the partial derivatives with
respect to time on the right hand side of (4.6), (4.15) and (4.27) are zero and we obtain the following

equilibrium equations for a laminated plate

ON, 9Ny
ox + W =0 (428a)

Ny, ON,

M, _0°M,, *M
+2 Y Y +q(x,y)=0 (4.28¢)

dx? dx0dy " dy?

Upon solving the boundary value problem and obtaining the bending moments M,, M, and the
twisting moment M, we can obtain the transverse shear force resultants from (4.23) and (4.24) as

follows
oMy My OMyy OM,

* (9x+8y'y_8x+c9y

(4.29)

4.3 Physical interpretation of the equilibrium equations

The equilibrium equations (4.28) can be obtained by considering the equilibrium of forces and moments

acting on element.

4.3.1 Force balance in the x-direction in terms of resultants

Since the force and moment resultants vary from point to point in a laminated plate, we can use a
Taylor series expansion to represent the resultants acting on the edges in terms of the resultants at the

center of an element. Thus the axial force resultant N, on edge BC that is at a distance of Ax/2 from

agc > &% as shown in Fig. 4.4. To obtain the axial force acting on the edge BC, the force

resultant needs to be multiplied by the width Ay. Thus the axial force in the x-direction on edge BC

the center is N, +

is (N + 6{;\; = 8X)Ay. Similarly, we can express the axial forces in the x-direction on the the other three
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Ny A_y> Ax

vy e ([ ax\) - C
*Tox \T2 )Y y

Ay Ax

Ax
Al z
/ ONyy Ay
(22 ()

Figure 4.4: Forces acting on an element in the x-direction

edges. The equilibrium equation in the x-direction is obtained by summing the forces in the x direction,

ONy Ax ONxy Ay ONx Ax ONxy Ay
< =|A ) Ax - [ - ——==]Ay- - —Z|Ax=0 (430
(M+ax2)y+(%'+ay2)x(»// axz)y( =y ) AF =0 430

After canceling terms and dividing through by Ax - Ay we obtain

ON, . ONyy
ox ady

=0 (4.31)

This is identical to the equilibrium equation (4.28a) obtained earlier. Similarly, the following equilibrium
equation (4.28b) can be obtained by summing the forces in the y direction.

It is possible to obtain the equilibrium equation in the z-direction by considering the vertical forces
acting on an element as shown in Fig.4.5. Summing forces in the z direction gives

Figure 4.5: Forces acting on an element in the z-direction
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(%+6V Ax) (/+ yA)’) (%'_%E)Ay—(vy —%&)Ax+q(x,y)AxAy:0

0 ox 2 dy 2
(4.32)
After canceling terms and dividing through by Ax - Ay we obtain
V.
W o2 g (xy) =0 (4.33)
ox 0y

which is identical to Eqn. (4.19) for quasi-static loading. The other equilibrium equations are obtained
by summing the moments about the x and the y axes.

4.4 Boundary conditions

When solving boundary value problems, we need to define appropriate boundary conditions that
model realistic support conditions.

4.4.1 Clamped Boundaries

Consider a rectangular laminated plate that is clamped on all four edges as shown in Fig. 4.6

D C

-

Figure 4.6: Clamped rectangular plate

The boundary conditions along edges AD and BC are

P
w0=0,%=0,u0=0,v0=0 at x=0,a (4.34)

and along edges AB and DC are

)
wo =0, 6“;0_0 wop=0,v=0 at y=0,b (4.35)
It is possible to have other "clamped" support conditions. For example, consider a laminated plate that
is supported as shown in Fig. 4.7. In this case, the force resultants N, and N,, are negligible at x = a
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VA

%

A
%

—OaWO—O
Yo =Sy T
uOZO,UOZO

Figure 4.7: Different types of clamped boundary conditions

due to the roller supports and hence the boundary conditions can be specified as

%:O,Nxzo,ny=O at x=a (4.36)

wo =0, ox

4.4.2 Simply Supported Boundary Conditions

It is possible to have four different types of simply supported boundary conditions on the edges x = 0
and x = a. They are commonly classified as S1, S2, 3 and S4 simply supported boundary conditions [3,
4].

S1 boundary condition: Axially fixed, transversely fixed

wo=0, My=0,u=0,v9=0 (4.37)
S, boundary condition: Axially free, transversely fixed

wo=0, My=0,N,=0,v9=0 (4.38)

S1 and S; boundary conditions are illustrated in Fig. 4.8. The other two simply supported boundary

I 7 j I
| | T
! 1® 1 1@
77

S; boundary condition S, boundary condition

Figure 4.8: Different simply supported boundary conditions

conditions are defined as follows.
S; boundary condition: Axially fixed, transversely free

wo=0, My=0, ugp=0, Ng, =0 (4.39)
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S, boundary condition: Axially free, transversely free
wo=0, My=0, Ny =0, Ny, =0 (4.40)

The reader is refered to [4] for three-dimensional views of the four different simply supported boundary
conditions. Similar simply supported boundary conditions can be prescribed along the edges y = 0
and y = b.



Cylindrical Bending of Laminated Plates

5.1 Governing equations

We consider a laminated composite plate of width a in the x direction. The plate is assumed to be
infinitely long in the y direction and uniformly supported on the edges x = 0 and x = a as shown in Fig.
5.1. The loads are assumed to be independent of y, i.e., ¢ = g (x, ). In this case, the laminated plate will
deform into a cylindrical shape.

Figure 5.1: Cylindrical bending of a laminated plate

5.1.1 Displacements and strains

Since the loads and boundary conditions are independent of y, the resulting displacements, strains

and stresses are independent of the y coordinate, i.e., %y') = 0. In the case of cylindrical bending, the

mid-surface displacements are functions of the x coordinate and time ¢. That is,
up=ug (x,1) , vo=volx,1) , wo=wol(x,1) (5.1)

In the case of static loads,

up=uo(x) , vo=vo(x) , wo=wp(x) (5.2)
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The mid-surface strains and curvatures follow from (3.12), (3.13) and (5.2),

0 0
du dv, ou ov dv
0 0 0 0 0 0
— , — =0 , = _ 5.3
&= Tk &y 'y Yy by Tox T dx (5-3a)
d*wy 0%wy 0wy
x= "5 =- =0, Kxyy=-2_—= 5.3b
T TaE T Ty T " oxay (>:30)
5.1.2 Force and moment resultants
The force ans moment resultants follow from (3.26) and (5.3)
du dv d’w
_ 0 0 _ 0 0 0
Ny = Aneyg+ Ateyyy + Buike = An— =+ Ao =~ Bu— 5 (5.4a)
duy dvg d*wy
=Ap— + Ay —— — 5.4b
Ny = A o TAw BT (5.4b)
dug dvo d*wo
Nyy =A1g— + Agg— — — 5.4
y = A6+ Ase— -~ Ble— 5 (5.40)
dug dvo d*wy
My =B1— +Big— - D11——= 5.4d
x =B+ Bie— - - Du—5 (5.4d)
dug dvo d*wy
M, =Bip— + Byy— — D1p——— 5.4
y = Bra— =+ Ba—- 12 (5.4e)
dug dvg d*wy
My, = Bijg— + Bgg— — D1g——=~ 5.4f
xy = Bi6— = +Bes— 16— (5.4f)
5.1.3 Equilibrium Equations
The equilibrium equation (4.28a) reduces to
0
ON, ON dN,
=0 =0 5.5
0x * y = dx (5-5)
Substituting for N from (5.4a) into (5.5) gives
d?ug d*vg dPwy
An—=2 + A - B =0 (5.6)
13 167 n—s3
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The equilibrium equation (4.28b) reduces to
0
ONyy ON dN xy
= = 5.7
I + . 0 = o 0 (5.7)
Substituting for Ny, from (5.4c) into (5.7) gives
d*u d*vo d®wy
Alg— + A B -0 (5.8)
1675 66~ 2 1673
The equilibrium equation (4.28c) reduces to
ZMX azzg/ z/w{' M,
/%cay Y He (y)=0 = —+ql)= (5.9)
Substituting for M, from (5.4d) into (5.9) gives
d*wy d>u d3vy
D - B -B = (5.10)
u—_g ~Bu—_z -~ B3 =40)

Equations (5.6), (5.8) and (5.10) are the equilibrium equations for cylindrical bending expressed in
terms of the mid-surface displacements ug, vo and wo

5.2 General solution for cylindrical bending

The equilibrium equations (5.6) and (5.8) can be expressed in matrix form as
dzu() 3
Bi1| d
PR S gl (5.11)
dx20 Bis dx

Ass  —Aie
-A1s A1l

A1 A
Ae  Ass

Solving the system in (5.11) one obtains

d%uy

{ dzx2 } = l
d“ vy ~
dx? A

B | &°
2o (5.12)
Bl6 dx3
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which gives

d*ug 3 B d®w

== 5.13
a2 A do (5-13a)
2 > 13
dvo _ Cdwo (5.13b)
dx? A dx3
where the constants A, B and C in (5.13) are related to the laminate rigidities as follows,
A = A11A66 - A%6 (5.14a)
C = A11B16 — A16B11 (5.14¢)
Differentiating the equations in (5.13) and substituting into (5.10) we obtain
d*wy B d*wy C d*wy
D -Bi1— -Big——— = 5.15
nga “Bngga T Beraa a (x) (5.15)
which can be factored and written as
- d*wo
D =q(x (5.16)
i 4 (x)
where D is defined as ~ ~
- B C
D= D11 - Bui— — Bis— (5.17)
A A
dPwy

Equation (5.16) can be integrated to obtain and the result substituted into the equations in (5.13)

dx3
to obtain the differential equations for up and vy

.
w2 [awa (5.18)
x> A D

. A

dvo _C 1 / g (x) dx (5.18b)
x> A D

5.3 Solution for uniformly distributed load

If the laminate is subjected to a uniform distributed load ¢ (x) = go, then the integral of the load in
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equations (5.18a) and (5.18b) can be explicitly evaluated as
/ g (x)dx = / godx = gox + gocia = qo (x + c1a) (5.19)
where ¢ is a constant.
When the integral from (5.19) is substituted into (5.18a) and integrated as follows
d? B B
UZOZT q(x)dx:w—qf)(x+c1a)
dx AD AD
d n 2
o _ @ (x— +cpax + czaz)
dx AD \2
we obtain the following general form for the mid-surface displacement ug
B 3 2
Uy = — q~0 al + ey + czazx + 03(13 (5.20)
AD \ 6 2

where ¢, and c3 are integration constants. Similarly, the integral (5.19) is substituted into (5.18b) and
integrated

d? C C
_Vzozﬁ Cl(x)dX=~—c{O(x+Cla)
dx AD AD

d 2 2

ﬂ=% x—+clax+C4a2

dx AD \ 2

to obtain the following general form for the mid-surface displacement v

2 3 2
_Ca (% + Cl;x +caa’x + C5a3) (5.21)

where ¢4 and c¢5 are integration constants. Next, (5.16) in integrated four times

- d°

b= [awa=atrea
X
2

ciW():@(x2 2)

— +c1ax +cga

dx2 p\2
d 3 2
o (% + A0 cgale+ C7a3)

to obtain the following general solution for the transverse deflection wq
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4 3 2,2
wo = 20 ;_4 ; 01‘6” + C“‘z ~ +craPx + cga (5.22)

where cg, ¢y and cg are intergration constants. The eight integration constants cj, . . ., cg in (5.20), (5.21)
and (5.22) are obtained by satisfying the relevant boundary conditions at x = 0 and x = a.

The force resultant N, is obtained by substituting for ug, vo and wo from (5.20), (5.21) and (5.22) into
(5.4a),

dug dvg d*w
Ny = A1 — + Ajg— — Byj——=2
x = AN 16— n_s
A B 2 C B
- 249 (x—+clax+cza2) +16_qo( +C161X+C4a2) 21140 (—+c1ax+06a )
AD \2 AD \2 D \2
2 2
~q—~ (A11 B +A16 C Bll A) (X_ +c1ax) + % (A11 E (&) +A16 6 Cq — Bll A 06)
AD 2 AD
0
q0 % > ~ x? q0a2 ~ ~ ~
= — (A11 B + _Bll A) - +c1ax) + — (A11 B C2 +A16 C Cq4 — Bn A 66) (523a)
AD 2 AD

where it can be shown that the first term is zero based on the definitions for A, B and C in (5.14). Thus,
the force resultant N, reduces to

2
Nx = % (A11 E C2 +A16 6 Cq4 — Bll A C6) (5.24)
AD

The force resultant N, is obtained by substituting for ug, vo and wg from (5.20), (5.21) and (5.22) into
(5.40),

duo dV() d2W0
Nyw = A1 0 4 4 _ B i
xy = Ale— 66y ~B1o— 5
q0 5 = ~ 0 x? q0a2 ~ ~ ~
=20 (A16 B+ = A) (— +c1ax) + (A16 Bey+Ags Cca—Big A c6)
AD 2 AD

which simplifies to

2
e (A16 B o+ Agg C ca—Big A c6) (5.26)
AD

Nyy =

The moment resultant M, is obtained by substituting for ug, vo and wo from (5.20), (5.21) and (5.22)
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into (5.4d),
M. =B duyg +B dvg D d*w
x = Bu—=+Bie— 13

q0 > ~ -\ (2 qoaz ~ ~ ~
= — (Bll B +Bl6 C —D11 A) —+ciax|+ —— (BH B ¢y +Blé C Cq — D11 A C6)
AD 2 AD

D
2 2
= —@ D11 = Byr—=— Bis— (x— +Clax) +% (311 Bcy+BigCca—Dy1 A C6)
D A A 2 AD

which simplifies to

o

X2 qoaz ~ ~ ~
Mx = —q0 E +clax) + — (Bll B (o)) +B16 C Cq — D11 A 66) (528)
AD

5.4 Simply supported laminated plate under uniform distributed load

Let’s consider the cylindrical bending of a laminate that is simply supported at the edges and subjected
to a uniform distributed load of magnitude g in the positive z direction. The edge x = 0 is subjected to
S1 boundary conditions (wg =0, My =0, ug =0, vo = 0) and the edge x = a is subjected to S4 boundary
conditions (wg =0, My =0, Ny =0, Ny, =0).

z q(x) = qo
N Y A N A A
— X i
| a I
S1:we=0,M,, =0 S4wyg=0,M, =0
Uy =0,v5=0 Ny =0,Ny,, =0

Figure 5.2: Cylindrical bending of a simply supported plate subjected to a uniform distributed load

5.4.1 Determination of constants

The eight integration constants c1, . .., cg in (5.20), (5.21), (5.22), (5.24), (5.26) and (5.28) are obtained by
satisfying the relevant boundary conditions at x = 0 and x = a.
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Boundary conditions at x = 0

u(0)=0 = ¢3=0 (5.29a)
Vo (0) =0 = ¢=0 (5.29b)
wo(0)=0 = ¢5=0 (5.29¢)

2
Mx(0)=0 = %(311§C2+Bl6664—D11A66)=0
AD

= B11 E ¢y + Big 6 cs—D1q A Ce = 0 (529d)

Boundary conditions at x = a

4 4 4
q_(ﬂTT%«O)o
D

= 1+4c¢1+12c+24c7=0 (5.30a)

Clz 2 q0a2 ~ ~ ~
Mx(a)=0 = —q0 7+cla +$(311BCz+316CC4—D11AC6)=O

wo(a)=0 =

= 0 by equation (5.29d)

a® 1
= —+ Cla2 =0 = c¢1=-2 (530b)

2 2
Ny (a) =0 = Ay B cr+ Aig 6 c4— B11 A Ce = 0 (530C)
Nyy(a)=0 = Ay Beco + Agg Cocy— Big A ce =0 (5.30d)

Equations (5.29d), (5.30a), (5.30c), and (5.30d) need to be solved to obtain c3, ¢4, cs and c7. The solution
c2 = ¢4 = ¢ = 0 satisfies equations (5.29d), (5.30c), and (5.30d). By equation (5.30a):

NI—

0 1
+% +24c7=0 = c¢7=—

1+4e{'_

In summary, the constants c; are

1 1
01:—52C2:C3:C4205:C6:0}C7:_;C8:0
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5.4.2 Mid-surface displacements

We obtain the final solutions for the mid-surface displacements by substituting for the constants ¢; into
(5.20), (5.21) and (5.22). The mid-surface displacement ug simplifies to

% 3 -1
MO(X)ZA—DO %+91" 2a%+§4'oazx+93"0a3)
E 2
= 29% oy _3g) (5.31a)
12 A

> 3 -1 >
VO(X):A_IN)O %+,Of' 2a%+%'0a2x+95' a3)
s 2
_ 490 oy _30) (5.32a)
12 AD

and the mid-surface displacement wo becomes

1
4 203 0202 L
x ax asx
wo(x) = @(— + +9(2 +97'24a3x +98'(0a4)

D24 6
= quN (x3 —2ax? + a3) (5.33a)
24 D

5.4.3 Mid-surface strains and curvatures

Once we have ug (x), vo (x), wo (x) the mid-surface strains and curvatures can be calculated at any

location. The mid-surface strains strains are

&) = dug _ d | B ?ON (2x3 - 3ax2) = Bf’? x(x—a) (5.34a)
dx dx |12 AD 2
JO (5.34b)

y
0 _dvo _ Cao

Yxy = o = 5 ADX (x—a) (5.34¢)
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Note that the in-plane normal strain £} and in-plane ygy are not zero if the laminate constants B and C

are non-zero. The curvatures reduce to

Kx = — ) = —;—%x (x—a) (5.35a)
ky =0 (5.35b)
Kxy =0 (5.35¢)

5.4.4 Force and moment resultants

Once the constants cj, ..., cg have been determined from the boundary conditions, the force and
moment resultants are obtained from (5.24), (5.26) and (5.28),

Ne(x) =0, Ney(x)=0, My(x)= %x(a —x) (5.36)

It makes sense that the force resultants N, and N,, are zero since the simple support at x = a is
subjected to S4 boundary conditions wherein N, (a) = 0 and Ny, (a) = 0. Depending on the stacking
sequence, the force resultant N, may be non-zero if the support at x = a is restrained against axial
displacement.

5.4.5 Maximum deflection

The maximum deflection wj'*®™ occurs at the mid-span x = a/2

a (.3 3 500

W = 4y (z) _ Aoz (a4t _an, 3| o290 (5.37)
2/ 24p\8 2 384 D

Recall that, D= Dy; — B11 é - B16%. Therefore, the in-plane extensional rigidities A;; and the bending-

extension rigidities B;; also influence the transverse deflection!

If the deflection is calculated by neglecting the elastic coupling rigidities (i.e., by setting B= 0, C= 0),
then the maximum deflection #w'®* depends only on the bending rigidity D13 since

/\max — 5q0a4
0 384D

(5.38)
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Therefore, the ratio of the maximum deflections can be expressed as

~ B c
max D +B11= + B16T
11 2 A

w D Bi1 B By C N
== A S P R L SES T (5.39)
Wy D D AD  AD
where E= Bu8 4 BisC Ty,
AD AD
Wi = (14 E) a (5.40)

It can be shown that E is always positive. Therefore, the elastic coupling rigidities tends to increase the

maximum deflection of the laminate.

5.4.6 In-plane displacements at the supportx =a

The axial displacement of the laminate at the right support (i.e. at x = a) is

B qoa®
12 AD

up(a) = - (5.41)
The axial displacement can be positive or negative depending on the direction of g¢ and the sign of
the coupling coefficients. Note that in the case of a laminate, the axial displacement, is a linear effect.
The axial displacement will be in the opposite direction if the direction of the applied load is reversed.
This is qualitatively different from curvature shortening which is a non-linear effect. In the case of

curvature shortening, the right support will move inward by an amount A where

867

1=
3a

(5.42)

where ¢ is the maximum deflection. Thus, the curvature shortening A is always positive and is
proportional to the square of the maximum deflection, i.e., this is not a linear effect, unlike what we
see in laminated composites.

It is noted that in the case of a laminated composite plate, the right support can displace in the y

direction if the coefficient C is non-zero since

vo(a) = ——— ~3 (5.43)
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EXAMPLE 5.1: Cylindrical bending of a simply supported laminated plate subjected to a uniform

distributed load

Let’s consider the cylindrical bending of a unidirectional IM7 /8552 carbon fiber-reinforced [0,/90,]
laminated plate of length a = 0.5 m that is simply supported at the edges as shown in Fig. 5.3. The
laminated plate is subjected to a distributed load of magnitude 1 N/m?, i.e., go = =1 N/m?. The edge
x = 0 is subjected to S1 boundary conditions (wg = 0, My =0, up = 0, vo = 0) and the edge x = a
is subjected to S boundary conditions (wg = 0, My =0, Ny =0, Ny, = 0). The laminate thickness
H =0.8 mm.

1 N/m?

LAl Ll bl

I 0.5m |

Figure 5.3: Cylindrical bending of a [0,/90;] unidirectional fiber reinforced laminate subjected to
S1-S4 simply supported boundary conditions

The relevant elastic rigidities of the [02/90;] laminate are
A1 =7120x 10° N/m, Ag =3.84x10°N/m, Bi;1=-1271x10*N, D;; =3.80N-m (5.44)

Note that the elastic rigidities A1, and By are identically zero for the cross-ply laminate. The constants
A, B, C and D are evaluated using (5.14) and (5.17),

A=273x10"“ N?/m?, B=-488x10""N?/m, C=0N?/m, D=1528N-m (5.45)

The deflection wq(x) of the laminated plate is evaluated using (5.33a) and is shown in Fig. 5.4.

The maximum deflection of the plate

wmax _ 5qoa
384 D

~0.532 mm (5.46)
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Deflection wy, mm
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Figure 5.4: Deflection wo of a [02/90;] laminate subjected to S1-S4 simply supported boundary
conditions
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Since the laminate is unsymmetric, the bending-extension coupling rigiditiy B11 induces an in-plane

displacement ug that is shown in Fig. 5.5.
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Figure 5.5: Mid-surface axial displacement u( of a [0,/90>] laminate subjected to S1-S4 simply sup-
ported boundary conditions
The axial displacement u(a) at the right support is

. 3
uo(a) = —fzqfai = -1217x1073 mm (5.47)
Ab

Although the axial displacement u is small relative to wy, it cannot be ignored in our analysis. The
through-thickness variation of the normal strain &, and the normal stress o in the global coordinate
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system are shown in Fig. 5.6. As expected, the normal stress o is tensile on the bottom surface and
compressive on the top surface. However, portions of the second ply (0° lamina) are subjected to a

compressive normal stress o, although it lies below the mid-surface of the laminate.

1/2 T T T 172 T T T T T T

1/4f 1 s}

E or A E ot

3 3 \

N \ | N \ |

12— : el 1/ — —

-10 -5 0 5 -0.8 -06 -04 -02 0 02 04 06
Normal strain €4 (1) Normal stress o (MPa)

Figure 5.6: Normal strain ¢, and normal stress o, at x = a/2 for a [02/90;] laminate subjected to S;-S4
simply supported boundary conditions

The through-thickness variation of the longitudinal normal stress o and the transverse normal stress

o in the principal material coordinate system are shown in Fig. 5.7.
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Normal stress o; (MPa) Normal stress oo (MPa)

z/H
=

Figure 5.7: Normal stresses o1 and oy at x = a/2 for a [0,/90;] laminate subjected to S1-S4 simply
supported boundary conditions

The largest normal stress s1 in the fiber direction occurs on the bottom surface. The 90° plies are
subjected to a compressive transverse normal stress s, with the largest value on the top surface.
The minimum safety factor S?am = 1785 and it occurs on the top surface of the laminate. Note that
although the laminate will not fail due to the large safety factor, the transverse deflection wi® is
fairly large relative to the thickness of the laminate.
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Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness & of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

5.1 Consider the cylindrical bending of a laminated composite plate of length a that is clamped on
both edges (i.e., wo = dwo/0x = ug = vo = 0 at x = 0 and x = a). The laminate is subjected to a
uniform distributed load ¢(x) = go.

1 q(x) = qo

IIEEEEEEEEEEEEEREE

%—m

N

(a) Evaluate the constants c1, ¢, . .., cg in the general solution for a uniformly distributed load
using the boundary conditions.

(b) Provide analytical expressions for the mid-surface displacements uo(x), vo(x) and wo(x), the
mid-surface strains 2 (x) and ygy (x), the curvature «,(x) and the bending moment resultant
My (x).

(c) Analyze the cylindrical bending of a unidirectional carbon fiber-reinforced [0/90/45] laminate
that is clamped on both edges. The length of the laminate a = 0.5 m and it is subjected to a
downward uniform distributed load of magnitude 1 N/ m?. Plot the mid-surface displace-
ments up(x) and vo(x), the deflection wo(x) and the bending moment M, (x). Do the plots
make sense? Plot the through-thickness variation of the strain &, and the stresses o, and 7y,
atx = 0 and x = a/2. Discuss whether the direction and magnitude of the normal stress o
makes sense at the clamped edge and at the mid-span.

5.2 Consider the cylindrical bending of a cross-ply laminate of length a. It is subjected to a uniform
distributed load g(x) = go and the edges at x = 0 and x = a are both subjected to S; boundary
conditions (wo = 0, M = 0, up = vo = 0). Evaluate the constants cy, ¢y, . . ., cg in the general solution
for a uniformly distributed load using the boundary conditions. Analyze the cylindrical bending
of a unidirectional carbon fiber-reinforced [0,/90;] laminate. The length of the laminate a = 0.5 m
and it is subjected to a downward uniform distributed load of magnitude 1 N/m?.
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z 1 N/m?
LLLLUL UL LUl
Sl/lféx. eseesesese .Osom........ ses .../;%51

(a) Plot the deflection wo(x) and compare it with the deflection obtained in Example 5.1 of the
lecture notes for S1-S4 boundary conditions. Does the axial boundary conditions at x = a
influence the transverse deflection of the laminated plate? If it does, explain why.

(b) Plot the mid-surface displacement uo(x). Does it satisfy the S; boundary conditions at x = 0
and x = a? Discuss the variation of ug(x).

(c) Determine the in-place force resultant N, (x). Is it non-zero? If it is, can you explain why?

(d) Plot the through-thickness variation of the strain &, and the stress o at the mid-span x = a/2.

Discuss whether the direction and magnitude of the normal stress o, makes sense.



Navier Solution for Bending of Rectangular Plates 6

In this chapter, we derive analytical solutions for the bending of simply supported laminated rect-
angular plates using the solution process originally introduced by Navier for isotropic rectangular
plates.

6.1 Series representation of applied loads

Consider a rectangular laminated plate that is simply supported on all four edges and subjected to a
transverse distributed load ¢ (x, y) as shown in Fig. 6.1.

Figure 6.1: Simply supported laminated plate subjected to a distributed load

The distributed load ¢ (x, y) can be represented by the double Fourier series

[ee)

q(x,y) = Z Gmn smﬂﬁ ? (6.1)

m=1 n=1
where the load coefficients g,,, are obtained by multiplying both sides of equation (6.1) by sine
functions and double integrating as follows,

b a
k k [
‘/0 ‘/0 q (x,y)sin % sin —= y ——dxdy = Z Z / / Gmn SIN ;rx sin m;y sin Zx sin %dxdy

m=1 n=1

= Z Zq / smﬂsmﬂdx / smwsm ﬂdy
a a 0 b b

m=1 n=1
(6.2)
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where k and [ are arbitrary integers. Since

a 0 form#+k
/ sin 2 sin kﬂdx = (6.3)
0 a a form =k

N[

it follows from equations (6.2) and (6.3)

/ / q (x,y)sin _x sin l%dxdy qrl (621) (g) (6.4)

Since k and [ are arbitrary in (6.4), they can be replaced by m and n, respectively, to obtain

4 b a
Gon = — / / g (x, ) sin 2% sin 7 gray (6.5)
ab 0 0 a b

6.1.1 Uniform distributed load

Consider a laminated plate that is subjected to a uniform distributed load of magnitude ¢ acting
vertically downward as shown in Fig. 6.2.

} a

Figure 6.2: Simply supported laminated plate subjected to a uniform distributed load

In the case of a uniform distributed load

q (x,y) ==qo (6.6)

The load coefficients ¢, for a uniform distributed are evaluated using (6.5) and (6.6)

B —4qg a mmx\ |4 b nmy b 6.7
Gmn = — (—% 7) . (_E cos T) . (6.7a)
- (mfr 2) (<D™ ~1]- [(-)" 1] (6.7b)

which reduces to
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G = _iOZ [(=1)™ 1] - [(=1)" = 1] (m,n=1,2,3,...) (6.8)
mni

Alternatively, since [(-1)" — 1] equals -2 when m is odd and 0 when m is even, the load coefficients
gmn can be written as

~ 25499 for m,n=1,3,5,... (odd m and n) (6.9)

0 for m,n=2,4,6,... (even m or n)

6.1.2 Point load

Consider a laminated plate that is subjected to a point load of magnitude P acting downwards at
(x0,y0) as shown in Fig. 6.3.

|
z /0 (x0,Y0) b
. X
L )
1 a {

Figure 6.3: Simply supported laminated plate subjected to a point load

The point load can be represented by a Dirac delta function:

q (x,y) = =P6 (x0,y0) (6.10)

where ¢ is the Dirac delta function. The load coefficients g, for a point load are evaluated using (6.5)
and (6.10)

4 b a
G = — / / (=P) 6 (x0, o) Sin == sin =2 dxdy (6.11)
(lb 0 0 a b

Using the sifting property of the Dirac delta function, it follows from (6.11) that the load coefficients
gmn for a point load are

4P . mmxg . nmyo
qdmn = —— SIn n——

=1,23,... 6.12
ab a S1 b (m/n 7 /3/ ) ( )

6.2 Bending of specially orthotropic laminated plates
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In this section, we derived an analytical solution for the bending of specially orthotropic rectangular
laminated plates that are simply supported on all four edges. The plate is subjected to S; boundary
conditions on all four edges as shown in Fig. 6.4. Specifically,

wo=0, M, =0, up=0,vg=0 at x=0, a
(6.13)
wo=0,My,=0,u=0,v9=0 at y=0,0b

Sl:WO = O,My = 0
uO = O,UO = O

Figure 6.4: Simply supported laminated plate subjected S; boundary conditions on all four edges

A laminate is said to be specially orthotropic if

[B] =[0], A1s=A26=0, Dis=D2=0 (6.14)

Examples of specially orthotropic laminates

1. Symmetric cross-ply laminates, e.g., [0/90/0], [0/90]; .. .etc.

2. There are some uncommon angle ply laminates that behave like specially orthotropic lami-
nates, e.g., [(+6), /(F0),] suchas [30/-30/-30/30/-30/30/30/-30]. This is a special type of
anti-symmetric balanced laminates.

6.2.1 Midsurface displacements

Specially orthotropic laminates do not exhibit bending-extension coupling since [B] = [0]. Therefore,
when the laminate is subjected to bending, the mid-surface strains will be zero. Therefore, it is assumed
that the mid-surface in-plane displacements ug and v are zero and the deflection wy is a function of x
and y, i.e.,

uo (X, y) =0 (X/)’) =0, wp=wp (X/)’) (615)
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6.2.2 Midsurface strains and curvatures

Substituting for the assumed displacements ug, vo and w into (3.12) and (3.13), yields the following

expressions for the mid-surface strains and curvatures

0 _ 0 _ 0 _
ex=0, &,=0, 7,=0 (6.16)
0wy 0wy 0wy
== - . Kyy = =2 6.17
. 0x2 Y dy? Kxy 0x0y (6.17)

6.2.3 Force and moment resultants

Substituting for the mid-surface strains (6.16), curvatures (6.17) and laminate rigidities (6.14) into
(3.21)) and (3.24) gives the force resultants

Ny=0, Ny=0, Ny =0 (6.18)
and moment resultants 5w S
M. =-Dn o2 25
My =-D1 882;‘;0 226;—;20 (6.19)
M.y = —2Dgg gigg

6.2.4 Equilibrium equations

The equilibrium equations (4.28a) and (4.28b), namely

N, ONy

aa + 5y =0
X y

ONe . oN, ) (6.20)
0x dy

are identically satisfied since Ny = Ny, = Ny, = 0. The equilibrium equation (4.28c), namely
M, _0°M,, I’M
+2 Y Y +q(x,y)=0 (6.21)

Ox? dOxdy " dy?
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needs to be satisfied at every point in the laminated plate. Substituting for the bending moments from
(6.19) into (6.21)

0*wy 0*wy d*wy 9*wy d*wy
_py ¥ _p, 2% - DI i(x,y) =0 6.22
g 125 75,2 % onzay? ~ D12g.2g,2 ~ P a td (x,y) (6.22)
which can be factored as
D aW0+2(D +2D6) - O'wo_ p 0w _ (x,) (6.23)
N5 12 66 0x20y2 22 8y q\x,y :

6.2.5 Navier solution

Equation (6.23) is a fourth-order partial differential equation for the deflection wo(x, y). The solution
procedure, as suggested by Navier, involves assuming a double Fourier sine series expansion for the
deflection

wo (x,y) = Z Z Woan sm —_— 51 ? (6.24)

m=1 n=1
where W,,,, are the deflection coefficients. Substitution of (6.24) and the Fourier series expansion (6.1)

for ¢ (x,y) into (6.23) gives

O — mn mm\2 (nm\2 nm\4 mnx ., nmy
Zan:{ mn [Dn( P ) +2(D12+2D66)( ) (7) + Dy (7) —qmn}SlnTSl T—O
(6.25)
Since this equation has to hold true for arbitrary x and y, the term in braces must equal zero
Wy | D (@)4+2(D +2D )(T)2(E)2+D (E)4 - (6.26)
mn 11 a 12 66 a b 22 b =dmn .
from which it follows that
dmn
Winn = (6.27)

D11 (22)* +2 (D12 +2Dgg) (2)? (2£)? + Doy (22)*

Thus, the deflection W,,, can be determined from the load coefficients g,,,, the bending rigidities D11,
Dy, D13 and Dg¢g and the length a and width b of the rectangular plate. Subsequently, the deflection
wo(x,y) can be calculated at any point in the plate using (6.24).
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The curvatures are obtained by substituting for the deflection wy(x, y) from (6.24) into (6.17)

o Ox?
m=

Ms

2 mnx nm
Win ( ) sin — sin nry

1 n=1 a b
Wy W 2 mnx nmy
=- = W, (—) sin — sin — 2
“ (9y2 ;{;‘ " . b o
SR mnn? mmx nmwy
= -2 W,

The through-thickness variations of strains and stresses can be obtained at any location (x, y) based on
the mid-surface strains (6.16) and curvatures (6.28) at that location using (3.16).

The infinite series (6.24) is usually truncated to a finite number of terms when finding the displacements,
strains and stresses, as
wo (x,y) = Z Z Wi sin = sin == (6.29)

m=1 n=1

where N defines the number of terms retained in the series. The convergence of the strains and the
stresses is typically slower than the deflection since they involve the derivatives of the deflection with
respect to the spatial coordinates. Therefore, it is important to make sure that a sufficient number of
terms have been used to obtain the strains and stresses accurately.

6.3 Bending of cross-ply laminated plates

In this section, we develop analytical solutions for cross-ply laminates that may exhibit bending-
extension coupling. Consider simply supported laminates that are subjected to S; boundary conditions
on all four edges as shown in Fig. 6.5. on all four edges as shown in Fig. 6.4. Specifically,

wo=0,M,=0,N,=0,vg=0 at x=0,a

(6.30)
wog=0, My,=0,u=0,N,=0 at y=0,b
In the case of a cross ply laminate, Q15 = Qo = 0 for all lamina. Therefore,
A16=A2 =0, Bi1g=Byp=0, Dis=D2 =0 (6.31)
The transverse loading ¢(x, y) is expanded
qg(x,y) = Z Z Gmn sin 22 sin by (6.32)

m=1 n=1



6 Navier Solution for Bending of Rectangular Plates 97

SZ:WO :O,My = 0
uy =0,N, =0

Figure 6.5: Simply supported laminated plate subjected S, boundary conditions on all four edges

where the load coefficients g,,, are evaluated using (6.5) and are listed in (6.8) and (6.12) for a uniform

distributed load and a point load, respectively.

6.3.1 Midsurface displacements

In the case of unsymmetric cross-ply laminates, bending will induce in-plane mid-surface extensional
strains and displacements ¢ and vo. The solution procedure, suggested by Navier, involves assuming
the following double Fourier series expansion for the mid-surface displacements ug and vg and the
deflection wy

ug (x,y) = Z Z Unn cos —_— sm ?

m=1 n=1
nm
vo (x,y) = ZZansm—co by (6.33)
m=1 n=1
wo (x,y) = ZZW’""SIH_SI ?
m=1 n=1

6.3.2 Midsurface strains and curvatures

The midsurface strains, obtained by substituting for the mid-surface displacements from (6.33) into
(3.12), are

mﬂ) mmx nmy

sin —— sin —=
a b

a

2,
n=1
nzz; Viun (_n;r) sin mrx sin ? (6.34)
2,

nrw mim mmnx nmy
[Umn (—) +Viun (—)] COS —— COS ——
a a b
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The midsurface curvatures, obtained by substituting for the mid-surface displacements from (6.33)
into (3.13), are

W) v 2 mnax nwy
=— = sin — sin —
o= = 50 5 W (%) sin i
Pwy mmx nmy
Ky = — W, (—) sin — sin — .
y ay mzﬂ ; mn a b (6 35)
3 262w0 _ 5 S — W mnn? mmx nmy
Kyy = — oy - - n;; mn |~ cos p cos b

6.3.3 Force and moment resultants

The force resultants, obtained using (3.13), (6.34), (6.35), are

0 0
Nx = A118x + A128y + BHKX + Blzky

= i i [—An (%) Unn — A12 ( b ) Vinn + (B11 (HZT)Z +B1o (%)2) W ] sm? sin ?

(6.36a)

[—Alz (E) Unn — A ( b )an + (312 (n;ﬂ)z + B (ﬂ)z) W ] sin 27 gin ?

m=1 n=1 a b a
(6.36b)
ny = A6672 +Bé6ny
= i i (Umn (%) +Vin (m?)) Aps — 2Bes (mn;rz) Wy | cos ? cos ? (6.360)
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The moment resultants, obtained using (3.24), (6.34), (6.35), are
M, = By1€&; +3128 + D11kx + D12ky
S mn m\2 n\2 . max nmy
= D () = (5 Vo 21 (57 () W sin i 52
(6.37a)

M 3128 +Bzz£ +D12Kx+D22Ky

:m:g [ Blz( ) n— B» (%) an+(D12 (?)2+Dzz (%)Z)W Sln%51 ?
(6.37b)
My = 366')’2 + DeeKkxy
I R e R
m=1 n=1

6.3.4 Equilibrium equations

Substituting the force resultants N, and Ny, from (6.36a) and (6.36¢) into the equilibrium equation
(4.28a)

ON, ONyxy
=0 6.38
ox * 0y ( )
gives
Z Z K11Umn - K12an - K13Wmn] COS @ sin @ =0 (6.39)
m=1 n=1 a b
which reduces to
Kll Umn + KlZan + K13Wmn =0 (640)
where,
mi\2 nm\2
o= (2 2
mm\ (nm
K12 = (A12 + Ags) (7) (?) 641
mm\3 nm\2 (mn mnn?\ (nx :
K= =y (%) () () 2 (2 ) ()

mm\3 nmw

=—-Bn (7) — (B12+2Bgs) (?) (7)2
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Substituting the force resultants N, and N, from (6.36c) and (6.36b) into the equilibrium equation
(4.28b)

agv;y + aa—]\;f =0 (6.42)
gives
; HZ:; [-K21Umn — K22Viun — K23Wp ] sin anx cos ? =0 (6.43)
which reduces to
K21Upin + K22Vin + KozWinn = 0 (6.44)
where
Ko1 = (A12 + Ags) (?) (%)
K2 = Ags (%)2 +Axn (%)2
mm\2 (nm mm\2 (nm nm\3 (6:45)
Ko = =285 (<) () =B () () -2 (5)
= —(B12+2Bes) (?)2 (%) - By (%)3

Substituting the moment resultants M., M, and M, from (6.37) into the equilibrium equation (4.28c)

M, _0’M,, O*M
0x2 2 8x5yy * ayzy e e) =0 (640
gives
Z Z [_K31 Umn — K32Vinn — K33Winn + an] sin ? sin ? =0 (647)

m=1 n=1

which reduces to

K31Upin + K32Vin + K3zWoin = Gnn (648)
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where 3 mm\3 mm\ (nm\?2 mm\ (nm\?2
K == () 280 () (57) - B2 () ()
(2 2 (1) (2
K= () () -2 () () =22 ()
= — (B12+2B¢s) (mﬂ)2 (%) - Bx» (%)3 (6.49)
K33 = D13 (?)4 +D1p (%)2 (?)2 +4Dg¢s (HZT)Z (%)2
oo (%) 02 () | (F)
o (1) 2015200 () (2 0 ()
6.3.5 Solution for the displacement coefficients
Equations (6.40), (6.44) and (6.48) can be written in matrix form as:
Kin Kz Kiz| | Umn 0
K12 K22 K23 an = 0 (650)

K1z Kz K33 \Win qmn

where K;; are defined in (6.41), (6.45) and (6.49) and [K] is symmetric since Kj; = K;;. The displace-
ment coefficients Uy, Vinn and W,,,, can be obtained by solving equation (6.50) numerically for each
combination of m and n. Once we have the displacement coefficients Uy, Vinn and Wy, the midsurface
strains and curvatures at any location (x, y) can be determined using (6.34) and (6.35). In practice, We

usually truncate the infinite series to a finite number of terms

ug (x,y) = ZZU’""COS_SI by

m=1 n=1
Ns N

vo (x,y) = Z Z Vian sm e cos ? (6.51)

m=1 n=1

wo (x,y) = ZEW nsm—s1 by

m=1 n=1

where N, defines the number of terms retained in the series. As discussed earlier, it is necessary to
check for the convergence of displacements and stresses to make sure that a sufficient number of terms

has been used in the series solution.
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6.4 Bending of antisymmetric angle-ply laminated plates

It is possible to develop a Navier solution for antisymemtric angle-ply laminates for certain bound-
ary conditions. Consider an antisymmetric angle-ply laminate that is subjected to the following S3

boundary conditions on all four edges as shown in Fig. 6.6,

wo=0, My=0,u0=0, Nyy=0 at x=0,a
wop=0, My=0, Ney=0,v9=0 at y=0,b

(6.52)

11 1 I e — O — 0

=0
a |
53:W0 = O,My =0
v = 0,N,, =0

Figure 6.6: Simply supported laminated plate subjected Sz boundary conditions on all four edges

An antisymmetric angle-ply laminate has an even number of orthotropic layers with the principal mate-
rial directions oriented at 8 on one side and —6 on the other side of the midsurface, with 0° < 6 < 90°. Ex-
amples of antisymmetric laminates include [-45/30/-15/15/-30/45] and [0/45/90/60/-60/-90/—-45/0].
In the case of an antisymmetic angle-ply laminates, the following laminate rigidities are zero,

A16=A2% =0, Bi1=Bn=Bio=Bes=0, Dig=Dy =0 (6.53)

The Navier solutions for the midsurface displacements of antisymmetric angle-ply laminates is

ug (x,y) = ZZU nsm—co ?

m=1 n=1
. nm
vo (x,y) = ZZancos—s by (6.54)
m=1 n=1
wo (x,y) = ZZWmnsm—sm?
m=1 n=1

We can use a similar procedure as before to solve for the displacement coefficients Uy, Vi and Wi,y,.
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In the case of antisymmetric laminates we obtain the following system of equations

K11 K12 Ki3| | Unn 0
Kio K Kn|{Vwn(¢=9 0 (6.55)
K13 Kz Ksz3| (Win dmn

where the coefficients K;; in the square matrix are

mm\2 nm\2
K1 =A11( ) +A66(_)

a b
K12 = (A12 + Ags) (%ﬂ) (%)
Ko = -amo (2} (12 - s ()

Ko = Ap (%)2 + Ags (%)2 (6.56)

o (2] 30 (2 (12

mm\4 nm\4 mm\2 (nmw\2
K33 = D1 (—) +Dx (—) +2 (D12 +2De) (—) (—)
a b a b
Upon solving for the displacement coefficients U, Vinn and Wy, from (6.55), the midsurface dis-
placements can be obtained from (6.54). Subsequently, the mid-surface strains and curvatures at any
location (x, y) can be determined using (3.12) and (3.13), respectively. Once the mid-surface strains and
curvatures have been determined, the through-thickness variation of the strains and stresses can be

evaluated using (3.16).

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness / of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,
respectively. Use the Tsai-Wu theory for failure analysis.

6.1 Consider the bending of a [0/90]s carbon fiber-reinforced square plate with unidirectional plies.
The length and width of the laminated plate are a = b = 0.5 m. All four edges of the plate are
simply supported with S; boundary conditions. The plate is subjected to an off-center point load
of magnitude P = 1 N acting downward at x = a/4 and y = b/2 as shown in the figure. Analyze
the bending of the specially orthotropic plate using the Navier solution by truncating the infinite

series to a finite series with summation ranging from 1 to N.
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1P

(a/4,b/2)

(a) Evaluate the deflection wo(a/2, b/2) at the center of the plate. Tabulate the deflection for
Ny = 5,25 and 50. Comment on the convergence of the deflection as N is increased.

(b) Plot the converged deflection wo(x, b/2) vs. x. Determine the maximum deflection w*®. Does
the maximum deflection occur at the point of application of the load?

(c) Plot the converged deflection wo(a/4,y) vs. y. Is the plot of the deflection in the y-direction
qualitatively similar to the plot of the deflection in the x-direction?

(d) Evaluate the curvatures at the center of the plate and the normal stress o (a/2,b/2,-H/2)
on the bottom surface. Tabulate the normal stress o (a/2,b/2,-H/2) for Ny = 5,25 and 50.
Comment on the convergence of the normal stress o as compared to the convergence of the
deflection wq as N, is increased.

(e) Plot the through-thickness variation of the stress components o, 01, o» and the safety factor
S« at the center of the plate and obtain the minimum safety factor § T;” at that location.

6.2 Consider the bending of a [02/90,] carbon fiber-reinforced rectangular plate with unidirectional
plies. The length and width of the laminated plate are a = 0.6 m and b = 0.4 m, respectively. All
four edges of the plate are simply supported with S, boundary conditions. The plate is subjected
to a uniform distributed load of magnitude go = 5 N/m? acting downward as shown in the figure.

Analyze the bending of the unsymmetric cross-ply laminated plate using the Navier solution.

(a) Plot the deflection wo(x, b/2) vs. x. Determine the maximum deflection w{'®* at the center of
the plate.

(b) Plot the in-plane displacement ug(x, b/2) vs. x. Determine the in-plane displacement u( (0, 5/2)
at the mid-point of the edge at x = 0.

(c) Evaluate the mid-surface strains and curvatures at the center of the plate.

(d) Plot the through-thickness variation of the stress components oy, 01, 02 and the safety factor

S ra at the center of the plate and obtain the minimum safety factor S’;’;" at that location.



Approximate Solutions for Bending

7.1 Principle of minimum total potential energy

Suppose an elastic body occupying the region V with boundary S is subjected to forces F and surface
traction f on Sy as shown in Fig. 7.1. The elastic body is fixed on the boundary S,,. Let’s consider
a displacement field u(x) that satisfies the displacement boundary conditions # = 0 on S,. The
corresponding strains and stresses are denoted as &(x) and o (x), respectively.

Figure 7.1: Elastic body under applied loads

The total internal strain energy U, due to the deformation is obtained by integrating the strain energy

1
Us(u)z/ Udv:E/ ojjgijdv (7.1)
1% 1%

When a force F acting on elastic body displaces by an amount u, it loses some potential to do

density U over the volume V,

additional work. Here its potential energy is defined as the negative of the product of the force and
the displacement in the direction of the force. Hence, the potential energy Q of the external loads is
defined as

Q(u)=-F u- f-uda=-Fu; — fiu;da (7.2)
Sr Sy

Note that the reaction forces on the fixed boundary do not contribute to the potential energy of the

external loads since the displacement # = 0 on S,,.

The total potential energy IT of the system, which includes the elastic body and the external loads, is
defined as the sum of the elastic strain energy U, and the potential energy Q of the external loads,

II(u) = Us(u) + Q(u) (7.3)
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where u is an admissible displacement field that satisfies the displacement boundary conditions on
Su.

According to the principle of minimum total potential energy, among all the possible admissible displace-
ment fields, the actual/exact displacement field is that which minimizes the total potential energy of the system.
In other words, the body will deform in a manner that minimizes the total potential energy of the
system. This can be stated as

(u,) < (u) (7.4)

where u is an arbitrary admissible displacement field and u,, is the actual/exact displacement field
that satisfies elastic equilibrium.

EXAMPLE 7.1: Elastic bar under an axial load

Consider an elastic bar of length L and cross sectional area A that is subjected to an axial force F as
shown in Fig. 7.2. We are interested in determining the elongation ¢ of the bar using the principle of
minimum total potential energy.

Area A

/ Volume V

2

L -0
Figure 7.2: Axially loaded bar

Taking inspiration from the potential energy stored in a spring, we define the elastic potential /strain
energy density stored in an axially loaded bar as

1.2

where E is a material property that represents the stiffness of the material and ¢ is the axial strain that
characterizes the intensity of deformation

E= Z (76)

The elastic strain energy density can be expressed in terms of the elongation § by substituting for the

strain & from (7.6) into (7.5),

1E
U===6

— (7.7)
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The total elastic strain energy stored in the bar is obtained by integrating the strain energy density
over the volume

E E&?
U = / Udv = / —§%dv = —— AL 7.8
% v 2L? 217 @.8)

Thus, the total elastic strain energy stored in the bar is

EA
Us = z(gz (79)

When the force F displaces by a distance ¢ due to the elongation of the bar, it loses some potential to
do additional work. Hence, its potential energy is defined as the negative of the product of the force
and the corresponding displacement, i.e.,

Q=-F6 (7.10)
Thus the total potential energy of the system
II=Us+Q (7.11)

can be expressed in terms of the elongation ¢ by substituting (7.9) and (7.10) into (7.11)

EA
() = —6> - F6 7.12
() i (7.12)

The variation of the total potential energy of the system with respect to the elongation ¢ is shown in
Fig. 7.3.

[(s)

FL/AE

Figure 7.3: Variation of total potential energy Il with elongation ¢
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According to the principle of minimum total potential energy, at equilibrium

OTI(S) _ ZEAS

o T (7.13)

from which we obtain the actual elongation ¢ as

FL
(5_

= (7.14)

Note, that we obtained the elongation ¢ directly from the strain energy function (7.5) and the principle
of minimum potential energy without using Hooke’s law.

7.2 Total potential energy of a laminated rectangular plate

Consider a laminated rectangular plate that is subjected to arbitrary boundary conditions on its edges
and a distributed load ¢(x, y) as shown in Fig. 7.4. We are interested in determining the deflection and

Figure 7.4: Laminated plate subjected to a distributed load

stresses in the laminated plate using the principle of minimum total potential energy. To do that, we
need to first evaluate the strain energy stored in the laminated plate due to the deformation and the
potential energy of external loads.

7.2.1 Strain energy of a laminated plate

When a laminated composite plate is subjected to loads, the resulting strain energy can be obtained by
integrating the strain energy density over the volume of the plate,

1 0 0
Uszi/ (O-xgx"‘o'ygy‘*'% Sz+%07yz+M Yxz ¥ TxyYxy | dV
1%

1

(7.15)
= 2 /V (o-xsx +0oyEy +Txy’)/xy) dv
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where we have used the plane stress assumption. Recall the stress-strain relations in the global
coordinate system
Ox 01 O Ol [ &
oy (=101  0On QOx|{s& (7.16)
Txy @16 @26 566 Vxy

where @ij are the off-axis stiffnesses. Substituting for the stresses from (7.16) into (7.15), we obtain the
total strain energy of the laminated plate in terms of the strains

1

Us=3 / (éngi +20158x8y +2016ExYxy + 20268y Yxy + 005 +§667)2cy) dv (7.17)
v

Next, we invoke the Kirchhoff hypothesis

£y = £+ 2k
gy = sg + 2Ky (7.18)
0
yxy - ’ny + Zny

and substitute for the strains from (7.18) into (7.17) to obtain the total strain energy in terms of the

mid-surface strains and curvatures,

1 _ 2
US = E/ {Qll |:(89€) +2Z89€Kx +Z2K§
\'4

5 [.0.0 0 0 2 5 [.0.0 0 0 2
+2016 (837 0y + 289 Kny + Y0y K + KKy | +2006 [E075 + 28 Kxy + 2V0y Ky + 2 KyKay | (7.19)

— 2
+ Q66 [(’ygy) + ZZ’}/E)Cnyy + ZZK?C)I]} dv

ye) 0.0 0 0 2
+201, [sxsy +283Ky + 28y Kx +2 kay]

2
0 0 2.2
(s ) +218yl<y+z Ky

+ 0 [(&)

The volume integral in (7.19) is performed by first integrating through the thickness of the lami-
nate. This gives the total strain energy in terms of the laminate rigidities, mid-surface strains and

curvatures

1 2 2 2
US = E / {An (82) + 2A1289€8g + A22 (88) +2 (A1689C + AZGS?;) ’y?(y + A66 (796)1) + 231189CKX
A

+2B1, (SgKy +) Kx) +2Bis (sixxy + )/gykx) +2Bog (82 Kxy + 70y Ky) +2Be0x, (7.20)

0 2 2 2
ar 2366'}’xy’<xy ar D11Kx + 2D12KxKy +2 (D16Kx + D26Ky) Kxy + D22Ky ar D66ny} da

This is the most general expression for the total strain energy in a laminated plate due deformation.

In the case of symmetric laminates in pure bending, the mid-surface strains 2 = €% = 4 = 0 since the
y p g x y xy
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laminate rigidities B;; = 0. In this case, the total strain energy in (7.20) reduces to
1
== / {ani +2D12KxKy + Dzsz) +2 (D16/<x + D26Ky) Kxy + D66Kiy} da
2
wo 0wy 9%wy
/ / [ 11(62) +2D 6y2+ (ay2 (7.21)
0w 20\
4(D dxd
¥ ( 167552 xay (axay) ey

7.2.2 Potential energy of external loads

When a laminated plate is subjected to a distributed load, the distributed load ¢ displaces an area
element da by an amount wy in the z-direction. Thus the distributed load loses some potential to do
additional work on the laminated plate. Therefore, the potential energy of the distributed load is

defined as

a b
Q=- / o / / T (7.22)
A 0 0

7.3 Approximate solution using the Ritz method

The Ritz method is a convenient technique for obtaining approximate solutions to boundary value

problems. In the Ritz method, the solution is sought in the form

M; N
uo (x,y) = Z Z Unntbmn (%, )

m=1 n=1

M> N>
Vo (6,3) = D" > ViunVimn (%, ) (7.23)

m=1 n=1

M3 N3
wo (x,y) = Z Z WinnWmn (x,)

m=1 n=1

where U, Vi and W, are undetermined coefficients. The functions i, (x, y), Vin (x, ) and w,, (x, y)
are chosen to qualitatively resemble the anticipated deformation of the plate. The essential geometric

boundary conditions involving the displacements or slopes must be satisfied by the chosen functions.
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When the midsurface strains and curvatures corresponding to the chosen displacements (7.23) are
substituted into (7.20), the resulting total potential energy Il is a function of Uy, Vinn and W, ie.,

I =TI (Umn, Vinn, Winn) (7.24)
The principle of minimum total potential energy states that,
IT (Umn, Vin, Wimn) = stationary value (7.25)

This condition yields the following system of equations,

I1
C()—:O where m=12,...My; n=1,2,...N;
aUmn
o1l
3V =0 where m=1,2,...M>; n=1,2,...N> (7.26)
o1l
=0 where m=1,2,.. M3; n=1,2,...N3
ann

In the formulation presented here, the total potential energy of the system I is always a quadratic
function of the undetermined coefficients. Thus the conditions above, in (7.26), are a Z?zl M; X N; set
of linear simultaneous equations for the unknown coefficients U,,;, Vi and W,,,. Upon solving the
simultaneous equations for the unknown coefficients, we can evaluate the mid-surface displacements
using (7.23). Subsequently, we can determine the mid-surface strains, curvatures, and the strains and
stresses at any location within the laminated plate.

7.4 Bending of specially orthotropic rectangular plates

Consider a specially orthotropic laminated rectangular plate that is supported by arbitrary boundary
conditions on its four edges as shown in Fig. 7.5. The plate is subjected to a uniform distributed load of

!

—
<+

Figure 7.5: Laminated plate subjected to a uniform distributed load

magnitude gg acting downward, i.e.,
q(x,y) =-qo (7.27)
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Recall that the following laminate rigidities are zero for a specially orthotropic laminate
A =A2=0, [B]=[0], Dis=D2x%=0 (7.28)

Since the bending-extension coupling rigidities B;; are zero, bending of the laminate will not induce
in-plane mid-surface strains and displacements. Therefore, it follows that

up=vo=0, wo=wp(x,y) (7.29)

We use the Ritz solution to obtain an approximate solution for the laminated plate. The total strain
energy, obtained by setting D15 = D26 = 0in (7.21), is

1 [a b 8?wo \* 82wo 82wy 8?wo\* 8w\
Us = = D 2D D 4D
2/0 /0 [ “(axZ) TR gy T 22(8y2) * 66(6xay)

The potential energy of the external loads is given by

dxdy (7.30)

a b a b
o= [" [awymeyddy=a [* [ vty deay 7.31)
The total potential energy of the system follows from (7.30) and (7.31) as

H=U;+Q
1 e b 0w
= —/ / D1y 20

2 0 0 ox

In order to find an approximate solution for the plate deflection, we consider the following finite series

(7.32)
dxdy

2 2 2
0%wqy 8%wo 9%wy 0%w
2D1p—— Doy | — 4D 2
) +2D12 ox2 dy? + 22( 8y2) + 66(axay) T 2g90W0

in variable separable form,

M N
w0 (5,3) = D> WonnXm (x) Yo (3) (7.33)

m=1 n=1

where X, (x) and ¥, (y) are functions that are chosen to satisfy the essential boundary conditions and

Wynn are unknown coefficients. By the principle of minimum total potential energy,

oIl
6Wmn

=0, m=12...M; n=12,...N (7.34)

The relations in (7.34) give M x N equations for the M x N unknowns W,,,,,.
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Differentiating (7.33) for the curvatures we obtain:

0w _ i i W XY,
= m
axz m=1 n=1
62w M N
o2 5 S
ay m=1 n=1

o 1. (9%wg
=)
OWon [2 “( 9x2 )

M N
ZZWl XY | XY,

i=1 j=1

|
(2] 2
|

M N
ZZ D1 (XV'X0) (YY) Wij]
Jj=

i=1

Similarly,
0 1 8 wo 0%2wq 0 Pwo\ %wg  0Pwg 9 9w
W 127727027 )2 ] ‘D”[awmn ( axZ) 92 " 9x2 W ( ay> )]

M N M N

= D1, | XY, Z Z Wi XiY? + XY, Z Z Wi X!'Y;
i=1 j=1 i=1 j=1

M N
= D0 > Dua | (5) (Y7 )+ (X" Xm) (V37) | Wy

i=1 j=1
o 1 o |4
~2 = Wi X;Y:| = goXnYn
W [2(610W0)] qanmn ;; iXiYj| =qo

113

(7.35)

(7.36a)

(7.36b)

(7.360)

(7.36d)

(7.36€)
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Substitution of (7.36) and (7.32) into the principle of minimum total potential energy (7.34) gives

N a b a b
> {D11 ( / X;’X;,;dx) ( / Yandy) + Dy ( / Xidex) ( / Y;'Y,;'dy) 5
: 0 0 0 0

Jj=1
a b a b
D1y [(/ X,;;Xidx) (/ YnY;’a’y) + (/ Xi”dex) (/ YjY,'L'dy)
0 0 0 0
a b a b
4D66 (/ X;X,/ndx) (/ Y;Y,:dy)} Wij = —q0 (/ dex) (/ Yndy)
0 0 0 0

form =1,2,...M and n = 1,2,...N. This yields a linear system of equations for the unknown

M=

L

1l
—_

N (7.37)

coefficients W;; wherei=1,...Mand j=1,...N.

EXAMPLE 7.2: Bending of a specially orthotropic clamped rectangular plate

Consider a specially orthotropic rectangular plate of length a and width b that is clamped on all four
edges and subjected to a uniform distributed load of magnitude go as shown in Fig. 7.38. We use the
Ritz method to obtain an approximate solution for the deflection.

»

\ %

a

Figure 7.6: Clamped rectangular plate subjected to a uniform distributed load

The boundary conditions for the clamped edges of the plate are

0
wo:%:o at x=0,a
; . (7.38)
wo
WO=—=0 at y:O,b
dy
We choose a one term solution for wy in variable separable form
wo (x,y) = Wir Xq (x) Y1 () (7.39)

where the functions X; (x) and Y7 (y) need to satisfy the essential boundary conditions at the four
edges. In the case of a clamped rectangular plate, the chosen functions should satisfy the displacement

and slope boundary conditions at the clamped edges. For example, we can choose a one term solution
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of the form,

09 (2 12

a
(7.40)
(2 122V
h()= (b) (1 b)
which satisfies the boundary conditions (7.38) atx =0,a and y = 0, b.
In the case of a one-term solution, (7.37) reduces to
a b a b
{Dll (/ X{’Xl//dx) (/ YlYldy) + Doy (/ X1X1dx) (/ Y{’Yl//dy) Ur
0 0 0 0
a b a b
D1, [(/ X{'dex) (/ Y1Y1”dy) + (/ X{'dex) (/ YlYl”dy) alx (74.1)
0 0 0 0

a b a b
4D (/ X{Xl’dx) (/ Y{Yl’dy)} W11 =—qo (/ X1dx) (/ Y1dy)
0 0 0 0

Given the solution form (7.40), the integrals involving X (x) in (7.41) can be evaluated analytical to

obtain

“ a “ a “ 2
X dx = — X X dx = — X! (x) X! (x)dx = ——
[ owa=g5 [ noxee-g0 [ @x @ 5

a 2 . 4 (7.42)
[ rox@ea--= [ xoxma-
Similarly, integrals involving Y7 (y) in (7.41) are evaluated analytical to obtain
b b b b b 2
Y; dy = — Y; Y; dy = — Y (VY (V) dy = ——
/O 1 (N dy =75, /O 1M () dy ==, /O 1M B dy =557
b 5 b " (7.43)
[ novese-—m  [Honed-
Substituting of the integrals from (7.42) and (7.43) into (7.41) gives,
4 b -2 -2 -2 -2
12 (5 (g e 55 85« () s
630 105a ) \ 1055 105a | \ 105b
5a a a (7.44)

ot o - ) 3

Next, we multiply all the terms in (7.44) by 1052 /2ab to obtain an equation for Wy

7 4 7 49
[;Dn t o (D12 +2Dgs) + ﬁDzz] Wi = —g 10 (7.45)
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Solving for Wy, we obtain

49
Win=-—- 90

(7.46)
8 LDy + 5 (D12 +2Des) + 5D

Substituting for Wy; from (7.46) and X; (x) and Y1 (y) from (7.40) into (7.39) gives the following form

for the mid-surface displacement wq (x, y),

9 _ol@)e-HFIE) -3

(7.47)
8 LD+ (D12 +2Des) + 5D

wo (xry) ==

The numerator and denominator of (7.47) can be multiplied by a* and expressed in the alternate form

99 @t [(3) -9 (@) -

7.48
8 7D11 +4 (D12 + 2D66) §2 + 7D22S4 ( )

wo (x/ y) =
where s = a/b is the aspect ratio of the plate.

The maximum deflection, which occurs at the center where x = a/2 and y = b/2, can be determined
from (7.48),

4

qoa
orx = —0.003418 - 7.49
o D11 +0.5714 (D12 ot 2D66) S2 alx D22S4 ( )

In the case of a square isotropic plate (s = a/b =1, D11 = Dy = D12 +2D¢s = D), the maximum
deflection from (7.49) based on a one-term Ritz solution is,

4
winex = ~0,00133 - 124 (7.50)
D

The "exact" solution for an isotropic plate obtained using a large number of terms in the series [5] is,

4
winax = ~0,00126 - 1% (7.51)
D

Thus, the error in the one-term polynomial for a square isotropic plate is 5.6%. It is possible to reduce
the error by introducing more terms in the Ritz solution for the deflection wy (x, y).

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
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that the ply thickness / of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,

respectively. Use the Tsai-Wu theory for failure analysis.

7.1 Consider the bending of a [0/90]s carbon fiber-reinforced rectangular plate with unidirectional
plies. The length and width of the laminated plate are a = 0.6 m and b = 0.4 m, respectively. All four
edges of the plate are clamped. The plate is subjected to a uniform distributed load of magnitude

g0 = 10 N/m? acting downward.

Analyze the bending of the laminated plate using the one-term Ritz solution for wo(x, y).

(a) Determine the maximum deflection wi'® at the center of the plate

(b) Plot the deflection wo(x, b/2) vs. x

(c) Evaluate the curvatures «,, k, and «,, at a point with coordinates (a/4, b/4)

(d) Plot the through-thickness variation of the stress components o, o1, 02 and the safety factor
S o at the point with coordinates (a/4, b/4) and obtain the minimum safety factor S }”Z‘ at that

location.

7.2 Consider the bending of a [0/90]s carbon fiber-reinforced square plate with unidirectional plies.
The length and width of the laminated plate are a = b = 0.5 m. The edges x = 0 and a are simply
supported with §1 boundary conditions. The other two edges, namely y = 0 and b, are clamped.
The plate is subjected to a uniform distributed load of magnitude go = 10 N/m? acting downward.

Analyze the bending of the laminated plate using a one-term Ritz solution of the form

ot = () (1-3) () (1-5)

a a

(a) Determine the maximum deflection wi'®* at the center of the plate
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(b) Plot the deflection wo(x,b/2) vs. x

(c) Plot the deflection wg(a/2,y) vs. y

(d) Evaluate the curvatures «,, k, and «, at the center of the plate. Do the relative magnitudes
of the curvatures make sense?

(e) Plot the through-thickness variation of the stress components o, 01, o» and the safety factor
S« at the center of the plate and obtain the minimum safety factor § }”la” at that location.



Vibration of Laminated Plates

In this chapter, we will discuss the vibration of laminated composite plates.

8.1 Vibration of laminated plates

Let’s consider laminated composite plates of uniform density wherein all laminae have the same

density p. In that case, the areal mass Iy and rotary inertia I, of the laminated plate are

Io= pH 1—pH3
0= p1, 2= 12

(8.1)

where H is the thickness of the laminate. As previously demonstrated in Sec. 4.2.2, the density integral

I = 0. The equations of motion (4.6), (4.15) and (4.27) reduce to

(9Nx . any _ 1082140

0x dy or?
ONy, ON 2
Y y _ 10(9 )
O0x Oy or?
M, _0°My, 0°M, Pwy 9% (6%wo
+2 + +q(x,y,)=lh—— -h— |—
a2 "X axay T oy T4y =l —hys ( 0x2

where ¢(x, y,t) is a distributed load.

8.1.1 Forced vibration
In the case of forced vibration, the distributed load is a function of time,
q=q(x,y,1)
For example, in the case of harmonic excitation,
q=q(x,y)sin(wyt)

where w is the angular frequency of the applied force (forcing frequency).

(8.2a)
(8.2b)

(92
8;0) (8.20)
(8.3)
(8.4)
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8.1.2 Free vibration

In the case of free vibration, the plate is set into motion by initial conditions. The are no applied loads
acting on the plate, i.e., ¢ (x,y,t) = 0. The displacements can be written in the form

ug Up (x,y)
vo ¢ =1 Vo (x,y) ¢sin(wt+¢) (8.5)
wo Wo (x,y)

where w is a natural frequency that is a characteristic property of the system and is independent of the
initial deflection or velocity of the plate. Alternatively, the harmonic variation of the displacements can
be represented as follows

o Uo (x,y)

vo =14 Vo lx,y) e (8.6)

wo Wo (x,y)

8.1.3 Cylindrical bending vibration

In the case of cylindrical bending, 90) = 0 and the equations of motion (8.2) reduce to
y g aJy q

ON, 0%ug
= [p——— 7
Ox 07912 (8.7a)
ONxy I d%vo (8.7b)
ax Vo '
32Mx 52W0 92 32W0
+q(x, 1) =1 -h—|—- 8.7
a2 TN =l —has ( ax2) ®.7¢)

In the case of free vibration, the distributed load ¢ (x,¢) = 0. The displacements exhibit a harmonic
variation in time which can be expressed as follows,

uo Up (x)
vo t =14 Vo (x) t et (8.8)
wo Wo (x)

where w is a natural frequency.
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8.2 Free vibration of simply supported laminates in cylindrical bending

In this section, we consider the free vibration of a simply supported cross-ply laminate of width a that
is subjected to S; boundary conditions at x = 0 and x = a as shown in Fig. 8.1.

x,t) =0
. q(x,t)

VA
S /I l 0\
e ws

a

Figure 8.1: Free vibration of a simply supported cross-ply laminate in cylindrical bending
In the case of a cross-ply laminate, the rigidities
A1g=A%=0,  Big=Bx=0, Dig=Dyx=0 (8.9)

The distributed load ¢ (x, ) = 0 since we are interested in the natural frequencies and mode shapes for

a laminated plate in free vibration.

8.2.1 Displacements, mid-surface strains and curvatures

We assume the following form of the displacements,

mnrxy\
ug (x,y,t) = Uy, cos (—) e’
a

vo (x,y,1) =0 (8.10)

iwt

. (max
wo (x,y,t) = Wy, sin (—) e
a

where w is the frequency and m specifies the mode of vibration.

The midsurface strains, obtained using (3.12) and (8.10), are

&) = 20 =y, (M) sin () gie

Y
ov
0o _9vo _
&) = 3 (8.11)
Jdug dvy
Yoy =5+ —5=-=0
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The midsurface curvatures, obtained using (3.13) and (8.10), are

0%wy mm\2 . (mnx\ ;
o= 0 (P i () g

O0x2 a a
0%wy
Ky = — 52 =0
y
0%wy
Yy = —2— =
Kxy 0x0y

8.2.2 Force and moment resultants
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(8.12)

The force resultant Ny and moment resultant M, are obtained using the laminate rigidities and the

mid-surface strains and curvatures,

Nx = A1189( +BnKx = (@) [—A11Um +311Wm (@)] sin (@) eiwt
a a a

Mx = 31182 +D1]Kx = (@) [—B]lUm +D11Wm (@)] sin (mnx) eiwt
a a a

It is noted that the force resultant N, = A158Y + Bigk, = 0.

8.2.3 Equations of motion

Substituting for N from (8.13a) and u¢ from (8.10) into the equation of motion (8.7a)

ON, g 52140
Ox 0r?

=10

gives

2 . .
(%) [—AnUm + By W, (%)] cos (@) 't = —Iyw?U,, cos (@) e'v!
a a a a

Since (8.15) must hold for all x and ¢, we obtain

2 3
—A11 (7) Um +311 (T) Wm = —I()a)zUm
a

which can in turn be expressed as

mim\2 mim\3
[AH (—) —Ioa)2] U, — By (—) W, =0
a a

The equation of motion (8.7b) is identically satisfied since N, and vq are identically zero.

(8.13a)

(8.13b)

(8.14)

(8.15)

(8.16)

(8.17)
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Substitution of M, from (8.13b) and w¢ from (8.10) into the equation of motion (8.7¢c)

82Mx 0 62W0 o2 asz

+ . =lp——-h— | —

0x? o) 0752 2912 \ ox2

yields
3 .
- (@) [_BllUm +D11Wm (m)] sin (@) elwt =
a a a
. 2 .
— Ipw*W,, sin (mﬂx) €'l — h? (@) W, sin (@) e'v’
a a a

Since (8.19) must hold for all x and 7, we obtain

mim

3 4 2
Bur (Z5) Un =Dt (=5) Wan = =100 Won = 1 (=) W
a

a

which can be expressed as

By (m”)SUm+ {DH (%)4 _

a

8.2.4 Natural frequencies

Equations (8.17) and (8.21) can be written in matrix form as

Ar (22)? — [gw? ~By (2£)°

B (%) D (%) = [+ h (5)*] w2

{BRY

For a non-tirivial solution, the determinant of the matrix in (8.22) must vanish. Therefore,

6 2 2 4
D11A11 (T) —A11 10+12 (E) (E) (/.)Z—DHI() (m) a)2+
a a a a
2 6
o [lo+1> (5 }w‘*—B%l (*%) =0
a a

Equation (8.23) can be re-written as
aw* - Bw*+y =0

where the coefficients «, 8 and y are defined as
mi\2
I+ b (22) ]
a
mm\2| (mm\2 mm\4
B=An|lo+1 (—) (—) +D111o (—)
a a a

mm\6 mm\6
y=DuAn (Z7) -8 (%)

a=1
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(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)
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The roots of (8.24) yield the natural frequency w,, corresponding to mode m

— (8.26)

. lﬁm

Equation (8.26) yields two positive roots, namely a),(?}) and a),(,% ), for each m. Note that the resulting
natural frequencies ) have units of rad/sec.

8.2.5 Mode shapes

The mode shape corresponding to one of the roots, say w (i =1or2),is obtained by setting w = w

in (8.22) and striking out one of the redundant equations since the determinant is zero,

mm\2 (1) 2 mn
An (22) — 1o (w}y) ~Bu (%)

a

3 ol [0
~ By (1)’ Dy (22)) ~ [14 1 (257 (wg?)z : {Wm} - {0} (8.27)

a a

It follows from (8.27) that
mm\2 N\ 2 mm\3
[An (7) -1y (a)r(n)) } Un = B11 (7) Wi (8.28)
and therefore

Un __ Bu(%) 629
Wm - i 2 ’
Aqq (?)2 —1Iy (wfn))

Equation (8.29) gives the ratio of the amplitude of u( to the amplitude of wg. The mode shapes for the
deflection wo(x) and in-plane displacement uo(x) are shown in Fig. 8.2 for m = 1.

wo(x) Up (x)

Uy

X — X

7

Figure 8.2: Mode shape corresponding to m = 1 for a simply supported laminate in cylindrical bending
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The mode shapes for m = 2 are shown in Fig. 8.3.

wo(x) Up(x)

P

X X

Figure 8.3: Mode shape corresponding to m = 2 for a simply supported laminate in cylindrical bending

8.2.6 Symmetric cross-ply laminates

In the case of a symmetric cross-ply laminate, Bi; = 0. Therefore, (8.21) and (8.17) reduce to
mm\4
o (%)

2
i (22)° - oe?
a

2
Lo+ I (%) } wz] Wy =0 (8.30a)

U =0 (8.30b)

As is evident from Eqn. (8.30), the amplitude of the out-of-plane deflection W,, is uncoupled from the

amplitude of the in-plane displacement U,,.

Equation (8.30a) gives the natural frequency of bending vibration wly,

@ _ (mﬂ' 2 D1
Wy =(— B —
a I+ 1 (M)
(8.31)
3 (mn)z D1y 1
a4 Iy I 2
) NI N1 (22)
Since I, = pH>/12 and Iy = pH, the ratio of the rotary inertia to the areal density is
I, H?
- =— 8.32
Ly 12 (8.32)

It follows from (8.32) and (8.31) that the natural frequency of bending vibration

() _ (mm\? [Dn 1
W —( a) \/IO \/1+i(%)2(mn)2 (8.33)

12
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The normalized fundamental frequency wy is shown in Fig. 8.4 as a function of the length-to-thickness

Frequency Rotary inertia excluded
. —
W I \i\
(%)2 DI_El Rotary inertia included

5 110
Length-to-thickness ratio a/H

Figure 8.4: Effect of rotary inertia on the fundamental frequency of a laminated plate in cylindrical
bending

ratio a/H. As can be seen, the fundamental frequency decreases as the thickness H increases due to
the rotary inertia. The effect of rotary inertia on the natural frequency is pronounced for moderately
thick or thick plates. In the case of thin plates, the rotary inertia can be neglected and the fundamental

(1 o (mm\? [Pn
o = (%) o (8.34)

The natural frequency of in-plane vibration, denoted by w2, is obtained from Equation (8.30b)

w? = (%) \/%1 (8.35)

8.3 Free vibration of simply supported cross-ply laminated plates

frequency can be approximated as

In this section, we consider the free vibration of a cross-ply laminated rectangular plate that is subjected
to S, boundary conditions on all four edges as shown in Fig. 8.5. The distributed load ¢ (x,y,7) =0
since we are interested in the natural frequencies of a laminated rectangular plate in free vibration.

In the case of a cross-ply laminate,

A6 =A% =0, Bis=Bx=0, Dig=Dx=0
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S2
S2
z 4 b Sy:wy=0,M, =0
G Vo =0,N, =0
X
L )
I a |
Syiwe=0,M, =0
Uy =0,N, =0

Figure 8.5: Vibration of a simply supported laminated rectangular plate
8.3.1 Displacements, mid-surface strains and curvatures

We assume a Navier solution for the mid-surface displacements of the form

uo (x,y,1) = Upp cos (?) sin (?) St
vo (x,¥,1) = Vipn Sin (%) cos (?) ot 336)

. (maxy .
wo (x,y,1) = Wy, sin (—) sin
a

()

The midsurface strains and curvatures corresponding to the assumed displacements (8.36) are

ou mm mnx nmy
0 0 . . y
Ex = E = Umn (—7) SIn —— SIn Té’lwt
av nm mnx nmy
0 _ 0 _ : : Y it
8)’ = E = an (—?) Sin —— SIn Te’
dug Ov nmw mm mnx nmwy
0 _ 0 0 [ ( ) ( )] Y iwt
=—+—=|U, — | +V, — | | cos —— cos ——e
Vxy dy  Ox b "\ a a b
d*wq Ma\2 . max . ATy ;. (8.37)
Ky = — =Wun (—) sin —— sin ——e
Ox2 a a b
*wo W (mr)z sin 1TX o MRY
Ky = —— = _ JE— — e
d dy? "\ b a b
d’wo mnm? mrx nmy ;
=-2—— =_2W, cos cos rwt
oy 0x0y m ( ab a b
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The force and moment resultants are obtained by substituting for the mid-surface strains and curvatures

from (8.37) into (3.26)

0 0
Nx = A118x + Alzsy + BHKX + BlzKy

2 2 ' ,
= [0 () O = 2 () Vo B () B (%)) W sin ™25 sin 2t 538
a a a
Ny = Alzsg + A2262 + Bioky + BZZKy
[ 2 2 ] .
= |12 () U = (5 Vo (B2 (%) 4 i () i s "2 s 22t 8350
Nyy = A667§)cy + BeoKxy
i 2
= (U (%) Vi (7)) = 255 27| W s 2 cos 22t (8:350)
M, = 31182 + Blzsg + D11k + D12Ky
[ 2 2 ] .
= [0 (%) U = 812 (57 Vo # (D1 () D () W i % sin 22 e (8.380)
My, = B12&) + By&) + D1sky + Dooky
[ 2 2 1 ,
= [B12 (%) U= B () Vi (12 (%) D2 (7)) W sin ™% sin 2 (8380
Mxy = B6679¢y + D66ny
i 2
= (U (%) # Vi (7)) B = 2000 "5 W | cos ™% cos 22 et (8380
8.3.3 Equations of motion
The equations of motions for a laminated plate are,
(9Nx avay 82140
ey lo—s (8.39)
any (9Ny 82\}0
oty =l (8.39b)
M, M., M 0 & 82 (2wo 82
L 4+2 abAg Y4 T = oﬂ—b— ﬂ+ "o (8.39¢)
0x2 dxdy  0y? or? o2\ ox2  0y?
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The time derivatives of the mid-surface displacements and curvatures on the right hand side of
equations of motion (8.36) are

92 .
Iy atuzo = —Iyw?U,,, cos (_mzrx) sin (—ml: ) et
a
82
I0 22 = [0V sin () cos (222 ) el et
or? a b
52 (8.40)
w x nn
Io 8t20 = —Iyw*W,,, sin (—) sin (Ty) et
0% (0*wo 0wy 2 mm\2 (nm\2| . X\ . (NAY\ o
e G+ ) = W () () oin (%57 sin ()

Substituting the force and moment resultants (8.38), and time derivatives of the mid-surface displace-
ments and curvatures (8.40), into the equations of motion (8.39) and requiring that the equations hold
for all x, y and ¢, yields the following system of equations

K11Upin + K12Vin + K13Winn = Mllszmn
K1oUpn + Koo Vi + KpzsWin = MZZU)Zan (841)
K13Unn + K23Vinn + K33Winn = M330° Wi

where the stiffness constants K;; were previously defined in equations (6.41), (6.45) and (6.49) and the
mass constants M11, My, and M33 are defined as follows

2 2
My = Iy, M =1, Mz =1p+ 1, (@) + (%) ] (8.42)
a
Equations (8.41) can be written in matrix form as
K11 K1,  Kiz Uinn My 0 0 Unn
Kio  Kpn K| AV p=0?| 0 M © | 23 Yoz (8.43)
Kiz K Kzl (Wan 0 0 Mz \Wun

8.3.4 Natural frequencies

Equation (8.43) is an eigenvalue problem for the natural frequencies w for each m and n. It can be
written in compact form as follows
(K] -{d} = A[M]{d} (8.44)
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where,
K11 K1p K13 My 0 0 Unnn
[K] =|Ki2 Kx Kxp|, [M]=|0 M 0|, 1=w? {d}=1Vu (8.45)
Kiz K  Kzs 0 0 M33 Wonn

Equation (8.44) is a generalized eigenvalue problem which can be solved numerically to obtain the
eigenvalues 1 and hence the natural frequency w = VA for each combination of m and n. In general,
the eigenvalue problem will yield three eigenvalues, namely /l,(,},), , /15,%2, and /li,?,)q The corresponding

Wi = A%, (8.46)

The bending natural frequency w,,, is typically the smallest of the three natural frequencies wi, ie.,

natural frequencies are

W = min {wli), Wi, o} (8.47)

MATLAB code snippet

Use the following commands to calculate the eigenvalues and eigenvectors of the generalized
eigenvalue problem (8.44) numerically.

» [d,Jambda] = eig(K,M)
» omega = sqrt(lambda)
» omega_mn = min(diag(omega))

This will yield a 3 x 3 diagonal matrix lambda of eigenvalues and a 3 x 3 matrix d of eigenvectors.
The diagonal values of the 3 x 3 matrix omega give three natural frequencies cuf,},)l, w,(,f,)L and w,(qf,), The

i column of the matrix d are the amplitudes [U,(,izl, V,g,),, W,(,ffl]T.

We can tabulate the bending natural frequency w,,, values for the various mode shapes corresponding

to m, n to find the fundamental frequency,

"l 2 03
m
1 w11 w2 W13
2 w1 wWx W3
3 w3l W3 W33

Table 8.1: Tabulated w,,, to find the fundamental frequency
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The fundamental frequency wy

wo = MIN Wy, (8.48)

In general, w11 need not be the fundamental frequency since the smallest natural frequency might
occur for values other than m = n = 1 depending on the laminate dimensions and stacking sequence.

Exercises

Use the representative properties in Sec. 1.10.1 for unidirectional carbon/epoxy composites and
the representative properties in Sec. 1.10.2 for fabric-reinforced carbon/epoxy composites. Assume
that the ply thickness / of the unidirectional and fabric-reinforced laminae are 0.2 mm and 0.4 mm,

respectively. Use the Tsai-Wu theory for failure analysis.

8.1 Consider the free vibration in cylindrical bending of a simply supported [02/90;] laminate made
of unidirectional carbon fiber-reinforced plies. The laminate is of width a = 0.5 m and the edges
x =0 and x = a are simply supported with S, boundary conditions.

Z
s b \
2 [O= je SZ
gl a |

Assume a solution for the mid-surface displacements of the form in (8.10).

(a) Determine the natural frequencies w,(,i ) and w,(,% ) and the ratio Uy, /Wy, for the mode of vibration
corresponding to m = 1. Plot the corresponding normalized mode shapes u(x)/wo(a/2) and
wo(x)/wo(a/2) as a function of x for each natural frequency. Discuss the significance of the
two modes of vibration and what they represent.

(b) Determine the natural frequencies a)f,} ) and w,(,% ) and the ratio U, /W, for the mode of vibra-
tion corresponding to m = 2. Plot the corresponding normalized mode shapes u(x)/wo(a/4)
and wo(x)/wo(a/4) as a function of x for each natural frequency. Do the magnitudes of the

natural frequencies for m = 2 make sense relative to the natural frequencies for m = 1?

8.2 Consider the free vibration of a [04/904] cross-ply laminated rectangular plate made of unidirec-
tional carbon fiber-reinforced plies. The length and width of the laminated plate are ¢ = 0.3 m and

b = 0.5 m. All four edges of the plate are simply supported with S, boundary conditions.

Using a Navier solution for the mid-surface displacements of the form (8.36),
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S2

S2

S,
,13’ a

Sz

(a) Calculate the three natural frequencies a),% and the relative amplitudes U,Si,l /W,Sf,)l and
V,;‘,)L / W,§;2, corresponding to m = 1 and n = 1. Discuss the significance of the three modes
of vibration and what they represent. Determine the smallest of the three natural frequencies,
i.e., w11 = min wﬁ) , and discuss the mode of vibration that it corresponds to.

(b) Evaluate thé natural frequencies w1y, w21 and wyy and determine the fundamental frequency

wo of the laminated rectangular plate. What mode of vibration does wy correspond to?



PART I1I: FIRST-ORDER SHEAR
DEFORMATION THEORY AND ITS
APPLICATIONS



First Order Shear Deformation Theory

When analyzing moderately thick to thick laminated plates and sandwich composites, we need to take
into account the affects of transverse shear deformation. In this chapter, we will derive the governing

equations for the first-order shear deformation theory.

9.1 Kinematics

The first order shear deformation theory is based on the assumption that plane sections, originally per-
pendicular to the midsurface, remain plane but they need not remain perpendicular to the midsurface

after deformation as shown in Fig. 9.1.

Figure 9.1: Rotation of normal due to shear deformation

The assumed displacement field for the first order shear deformation theory is of the form,

u (x/y/Z/f) = MO (X/yrt) +Z¢x (-x/y/t)
v (x,y,2,1) =vo (x,3,1) +2¢y (x,¥,1) 9.1)

w (‘xlylzl t) =Wwo (x,y, t)

where ug, vo and wq are the mid-surface displacements. When we take the partial derivatives of the
in-plane displacements u and v with respect to z we obtain

ou ov

a_z = ¢x, G_Z = ¢y ©-2)

which indicates that ¢, and ¢, are the rotations of a transverse normal in the x — z and y — z planes,
respectively, as shown in Fig. 9.2. Note that in general, that the rotation of a normal need not equal the

slope of the mid-surface, i.e.,

owg owg

¢x # _a_x/ ¢y * _W (93)
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|
| Ug

Figure 9.2: Kinematics of the first order shear deformation theory

In other words, the normal need to be perpendicular to the mid-surface after deformation. The
reduction in angle between the normal and the midsurface in the x — z plane is the transverse shear

strain y,, i.e.

ow
Yxz = Ox + 8_)60 94)

In general, the transverse shear strains y,, and y,. need not be zero in the first order shear deformation
theory.

9.1.1 Strains

Given the assumed displacement field in equation (9.1), the strains can be calculated using equation
(1.10) as,

ou Ouy 0y

Sl el S T
Jdv 0Oy 0oy
£y = 3y~ ay +z By (9.5)
_Ou 9v _ dug Ovg A 0¢y
T 5 ox T By | ox ”( 3y ' ox
The strains can be expressed as
Ex = 3 + 7Ky
Sy = 82 + ZKy (96)
Yxy = ')’gy + ZKxy

where 82, sg and y?c yare the mid-surface strains and have the same definitions as before, i.e.,
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o Ou, o Ovy o _Ou, 0v,
CxT oy YT dy’ Yay = dy AT ©.7)
and the «’s are related to the rotations of the normal to the midsurface as follows,
0 0
= U = & = O + & 9.8)

Kx ox 7 dy’ Kxy ady ox

In the case of the first order shear deformation theory, the transverse shear strains are in general
non-zero and are defined as follows,

= @ + a_W = ¢ + %
=G T ey T T gy o0
= 8_14 + a_W = ¢ + % .
T2 =9 Tox TP Tox
9.2 Force and moment resultants
9.2.1 In-plane force and moment resultants
The three-dimensional stress-strain for an off-axis lamina in the x — y — z coordinate system are
Ex S Si2 Sz 0 0 Sig| o
gy S12 S» Sxz 0 0 Syl |oy
Si3 S Sz 0 0 S
gz | _[S13 523 S O 36( | 0z 9.10)
Vyz 0 0 0 Sy S5 O Tyz
Vxz 0 0 0 §45 §55 0 Txz
Yxy _316 Sx% S 0 0 §66_ Txy

In the case of the first-order shear deformation theory, it is assumed that the transverse normal stress
o is zero. Setting o, = 0 in Eqn. (9.10) gives the following reduced constitutive relationship for the

in-plane stresses and strains

Ex Ox
ev = [5]{ o (9.11)
Tx

’)/.Xy y

where [E] is identical to the plane stress-reduced compliance matrix for a lamina in the classical
laminated plate theory. The inverse relationships are
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Oy Ex
oyt = [Q &y (9.12)
Txy Yxy

where [@] is the off-axis reduced stiffness matrix for a lamina. The in-plane force resultants and the

moment resultants follow as,

H)/2 H/2
{N}:[H/Z {0} dz, {M}:/_H/2 {0} zdz (9.13)

The resulting laminate constitutive relations are the same as before,
N 0
M K

where the laminate rigidities [A], [B] and [D] are the same as those for the classical laminated plate

A B
B D

theory.

9.2.2 Transverse shear force resultants

In the case of an off-axis layer, the structure of the elastic stiffness tensor resembles that of a monoclinic
material. The 6x6 elastic stiffness matrix for an off-axis layer in the x — y — z coordinate system is

Cii Cp Ci3 0 0 Cie
Cip Cp Cxn 0 0 Cy
[E] _ Ciz3 Cp Ca _0 _0 Cs6

0 0 0 Cy C4 O
0 0 0 Cg Cs5 O

[Ci6 C6 C36 0 0 Coes

(9.15)

where,
Cus = m*Cug +n*Css,

Cs5 = m*Css +n°Cua, (9.16)
Cy5 = (Cs5— Cag) mn
and m = cos 6, n = sin6. Here Cy and Css are the transverse shear moduli in the prinicipal material

coordinate system, i.e.,
Cu=Gp, C55=G13 (9.17)
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Therefore, the off-axis elastic moduli Cu4, Cs5 and Cs5 can be expressed in terms of the transverse shear

moduli as follows .
Cus = m*Gos +n*Grs,

Cs5 = m*G13 +n°Go3, (9.18)
Cys5 = (G13 — Go3) mn

{Tyz} _ ] {Vyz} (9.19)
Txz Yxz

Since the shear strains are constant through the plate thickness, the transverse shear stresses are

It follows from equation (9.15) that,

Cy Css
Cs5 Css

constant through the thickness of each ply.

The transverse shear force resultants are obtained by integrating the transverse shear stresses through
the thickness of the laminate

H/2
V.
{ y} _ {Tﬂ} dz (9.20)
Vi Txz
—H /2
It follows from equations (9.20) and (9.19) that,
H/2
V. Cy C
vl E44 _45 ) Yyz dz (9.21)
Vi Css Cs5| |Vxz
—H /2
which can be written as
A A
Vy Ags Ass| |(Vaz

where Ay, Ass and Ays are the transverse shear rigidities that are define as follows

H/2 N

M= [ Cydi= Y a0 T 045 923)
—H/2 k=1

and K is a shear correction factor that is introduced to account for the discrepancy between the actual

stress state and the constant stress state assumed by the first order shear deformation theory. Typically,

K < 1 which amounts to reducing the plate transverse shear stiffnesses. It is noted that using K =1

will underestimate the deflection.
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9.2.3 Shear correction factor

The shear correction factor K is computed such that the strain energy due to transverse shear stresses
equals the strain energy due to the true transverse shear stresses predicted by the elasticity theory.

Consider a homogeneous beam with rectangular cross section of width » and height H. The actual
shear stress distribution through the height of the beam from strength of materials is,

(a) _ 6V

2
Txz = bH (1) - (i)zw ’ _g <z< g (924)

2

where V is the transverse shear force.

The strain energy per unit length of the beam is,

| b [H2
U= EAszyxsz = E -/H/Z TxzYxzd2 (9.25)

The strain energy due to the actual stress distribution follows from equations (9.24) and (9.25) as,

N b H/2
5@ :_/ e B2 g

2 H/2 G
H/2 5
b 36V2 [ (1 7\2
2 |-
2G »2H? |\2 H
_H/2
2
1812 /”/ 1 1z2+z4}d
= —-— —_— — —— —_— Z
2 2 4
Gbi? J . |16 212" H (9.26)

18V?2 [z 2 2 ]H/Z

= —-—— —__+_
GbH? 16 6H? 5H*| p

_ 18v2 | H_H H

"~ GbH? 32 48 160

_18v? ) H _ 3v2
~ GbH?2 © 60 5GbH

In the case of an isotropic beam, the strain energy due to constant shear stress through the thickness is

H/2 H/2
Ass = / Cssdz = / Gdz=GH (9.27)
~H/2 -H/2

In the case of the first-order shear deformation theory, the shear force resultant

V, = KAssyl,) (9.28)
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Since the shear force resultant is the shear force per unit width,

V f) f) V
— =K (GH = = —— 2
b ( )Yz Yoz KGbH 9-29)

The shear force resultant can also be obtained by integrating the shear stress through the thickness, i.e.,

H/2
Vy = / g (9.30)
—H/2

Since the transverse shear stress is assumed to be constant through the thickness,

\% \%
Z:Tg)H - Tg):ﬁ (9.31)

Therefore, the strain energy per unit length for a constant stress distribution is,

_(f) b [H?
v = E/ Wy Lz

H/2
b [HZ Yy vy

_b / v dz 9.32)
2 J_up, bH KGbH
b V2 V2

= H=—__
2 KGb?H? 2KGbH

Equating the strain energy densities from equations (9.32) and (9.26),

~(a)_~(f) vz V2
U =U" = 56hH = 2kGhH 9:33)
from which it follows that
5
K== 9.34
2 (9.34)

Thus, by equating the strain energy densities of the assumed constant transverse shear stress of the
first-order shear deformation theory and the actual parabolic variation of transverse shear stress for an
isotropic beam, we obtain a shear correction factor of K =5/6

9.3 Equations of motion and boundary conditions

As discussed earlier in Chapter 4, the three-dimensional equations of motion are integrated through

the thickness to obtain the equations of motion for a laminated plate in terms of the force and moment
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resultants. Following the procedure in Sec.4.2.2 we obtain the following five equations of motion,

5(;27: N 82\/;@ _ /_://22” 22_: iz (9.35a)
a;\’;y N % _ [://jpg_zdz (9.35b)
Py ‘;lyuq (x,3,1) = / ://22 p‘f_t;vdz (9.35¢)
ag?+§%1432125 %%ah (9.35¢)

The time derivatives terms on the right hand side of equations (9.35) can be expressed in terms of the

mid-surface displacements and rotations of the normal as follows,

H2 52, H2 (2,0
/ 5 dz :/ p( >+
—-H/2 ot —-H/2 ot

B 8%up 82¢x

=lo or? h or?

/H/Z 82\/ B 621)0 82¢y

_H/2p6t2 LR T
/H/Z Pw . Pwo
_H/2p6t2 S

"2 g2y %uy 6%

—zdz =1 +1 o

L,/z e S T?

H)/2 82\/ (92\/’0 62¢

—zdz=h— +L—>

[H/zpazzz ST T

0% ¢
£ or?

Ja:

(9.36a)

(9.36b)

(9.36¢)

(9.36d)

(9.36¢)

The equations of motion for the first order shear deformation theory follow from equations (9.35) and

(9.36),
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ON, + a]ny azuo 02¢x

ox ay fo o2 T h 912 (9.37a)
azav;y + aa]\;y =1 8;;;0 +1h a;j;y (9.37b)
58‘3 + aalyy#l (x,y,t) =1y 5;;;0 (9.37¢)
63)4; + az:yxy ~Ve=h a;;;” +1 a;zx (9.37d)
agﬁcy .\ ‘98_1‘?_% - 11% n 2% (9.37¢)

The five partial differential equations need to be solved to obtain ug, vo, wo, ¢, and ¢,. As in the case of

the classical laminated plate theory, if all the layers have the same density p,

HS
lo=pH, 6L =0, L= ”1—2 (9.38)

where H is the thickness of the laminated plate.

9.3.1 Boundary conditions

At x =0, q, the following boundary conditions need to be specified,

ug or Ny

vo Or Ny

wg or Vy (9.39)
¢ or M,

¢y or My,

9.3.2 Clamped edges

If the laminate is clamped at x = 0 or x = g, the mid-surface displacements are zero. In addition, the

normal is restrained against rotation at the clamped edges. Therefore,

up=vo=wo=0, px =¢, =0 (9.40)

Note that dwy/dx need not be 0 at a clamped edge.
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9.3.3 Free edges
If the laminate is free at x = 0 or x = q, then the force and moment resultants are zero. Therefore,

Ne=Nygy =0, Ve =0, My = My, =0 (9.41)

9.3.4 Simply supported edges

There are several different types of simply supported boundary conditions that can be applied at the
edges x = 0 and x = a. An all cases, the deflection wy and moment M, are zero. For example,

vo=wo=0, My =0, Ny=0, ¢y =0 (9.42)

9.4 Cylindrical bending of symmetric cross-ply laminates

Let’s consider the cylindrical bending of a symmetric cross-ply laminate as shown in Fig. 9.3.

L q(x)
BEEEEEEEEEE

— X

|
a |

Figure 9.3: Cylindrical bending of a symmetric cross-ply laminate

In the case of a symmetric cross-ply laminate, the following rigidities are identically zero
A6 =A% =0, Ay5=0, B;j=0, Di1g=D23=0 (9.43)
In the case of cylindrical bending, we assume that

—=2-0, v=0 (9.44)
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9.4.1 Displacements

Since the laminate is symmetric and cross-ply, it is assumed that only the transverse deflection wo and

rotation ¢, of the normal in the x — z plane are non-zero, i.e.,

up(x) =vo(x) =0, wo=wo(x), ¢x=0¢x(x), ¢y(x)=0 (9.45)

9.4.2 Strains

The strains follow from the definition (9.7) and the assumed forms (9.45) for the displacements and

rotations as,

Q=g (9.46a)
0x
ovo
&) = Fal (9.46b)
Jug Ov
0 0 0
20,70 _ 4
Yxy 3y + i 0 (9.46¢)
ow
Yyz = Py + ayo =0 (9.46d)
ow
Yxz = Ox + 6_)60 (9.46¢)
The «’s follow from (9.8) and (9.45),
Ky = 09 (9.47a)
0x
0
Ky = —;yy =0 (9.47b)
0
_0¢x 9%y (9.47¢)

= Ty T Tox

9.4.3 Force and moment resultants

The in-plane force resultants and moment resultants follow from (9.14), (9.46) and (9.47)

Ny=Ny =Ny =0 (9.48a)
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M, = D11k, = D13 09 (9.48Db)
0x
My = D12Kx = D12 (9¢x (948C)
0x
My, =0 (9.48d)
The transverse shear force resultants are obtained using (9.22) and (9.46)
0 0
V, A
Lo g 440 A5 ) Yy (9.49)
Vy M Ass Vxz
from which it follows that
Vy = KAyy,z0 =0 (9.50a)
owg
Vi = KAs5yYx; = KAss [ §x + 8_ (950b)
X
9.4.4 Equilibrium equations
The equilibrium equations (9.37) simplify to,
aly/'o aMo
*_+ == -0 / Satisfied (9.51a)
0x ady
0 0
0 0N,
ol + =0  Satisfied (9.51b)
0x y
0
av, 2
6Vx+ +g(x)=0 = KAss %4_8 2o +q(x)=0 (9.51¢)
Ox y dx  0x2
0
oM 2
aM"+ L _vy,=0 = Dna ¢X—KA55 ¢x+% =0 (9.51d)
0x y 0x? ox
0 0 0
0 My oM
M 7 W =0  Satisfied (9.51e)

0x +/3y
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Thus, three of the equilibrium equations are identically satisfied. Integrating equation (9.51c) with
respect to x gives,

owg 1
O+ W = _ﬁ% q ()C) dx (952)

Substituting equation (9.52) into equation (9.51d) gives

2

0P, 0
D1y afZ = KAss («m%) = - / g (x) dx 9.53)

Equation (9.53) is integrated twice to obtain the rotation ¢.. The resulting expression for ¢, is substi-
tuted into equation (9.52) and integrated once to obtain wo (x). The integration constants are obtained

by enforcing the boundary conditions atx = 0 and x = a.

EXAMPLE 9.1: Simply supported symmetric cross-ply laminates under uniform loading

In this example, we consider the cylindrical bending of a symmetric cross-ply laminate that is
subjected to the following simply supported boundary conditions at the edges x =0 and x = a

wo=0 at x=0,a

M,=0 at x=0,a

(9.54)

The laminate is subjected to uniformly distributed load of magnitude g, i.e., g (x) = go as shown in
Fig.9.4.

z q(x) = qo

N N N N N A O
5 =

| a I

Figure 9.4: Cylindrical bending of a simply supported symmetric cross-ply laminate under a uniform
distributed load

In the case of a uniformly distributed load, the right hand side of equation (9.53) can be explicitly
integrated to obtain
.
Dy == [ qx)dx=~ [ qodx =—qo (x+c1a) (9.55)

Ox?
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Integrating equation (9.55) twice w.r.t. x yields,

0oy 2

D1 a(i =—q0 (% +ciax + 62612) (9.56)

x®  crax? 5 3
Di1¢x = —qo (E ity 5 +ca°x +c3a ) (9.57)

Therefore, it follows that

q0 x> crax? > 3

Px(x) = "D (g t— taaxtcaa ) (9.58)
11

The deflection wy is obtained by integrating the term on the right hand side of (9.52) and substituting
for ¢, from (9.58) as follows

owg 1
+—=—— d
bt G2 = [ @
owg
+— == +
= o+ Gl = (r+c1a)
owg q0 x> ciax? N 2, 4 3 1 (+ ) (9.59)
— = | = cra“x+cza’| — xX+cra
ox Dnl\6 2 7 3 | T KA OV T
4 3 2.2 2
qgo [x* ciax® cpa“x 3 4 1 X
= =— =+ + + + - —d
wo (x) Do (24 G > c3a’x + caa ) KA55q0 ( > clax)

The integration constants ¢1, ¢2, c3 and c4 are obtained by enforcing the boundary conditions at x = 0

and x = a.

The bending moment M, is obtained using (9.48b) and (9.58)

o 2
M, = Dn& = —qp al +c1ax + coa? (9.60)
Ox 2

The boundary conditions at x = 0 yield

wo(0)=0 = «¢4=0

(9.61)
M (0)=0 = =0

Substituting for the constants ¢, and ¢4 from equation (9.61) into equations (9.59), (9.58) and (9.60)
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for wo, M, and ¢y, respectively, yields
4 3 2
wo (x) = Dq_fl (]26—4 + Clzx + C3a3x) — K?4055 (% + clax)
3 2
—_ 4o (¥ cax 3 9.62
6u ) == B2 [+ U2 s o 9.62
52
M, (x) = —qo (? +c1ax)
The boundary conditions at x = a yield
a2
Mc(a)=0 = ?+c1a2=0
R 1
= 5
4 4 2 2
qo (a a 4 qo (a a
=0 == - | Z—_Z =0
wo (@) ~  Dn (24 12t ) KAss ( 2 2 ) D),
4
qgoa* (1 1 3
- Dn (24 12”3) =0
e
Y
Substituting the constants ¢; and c3 from equation (9.63) into Eqn. (9.62) for wy yields,
qgo (x* ax® d%x qo (x* ax
wo(x) = o2 (L _ 20 28)_ L
D11 \24 12 24 KAss \ 2 2 (9.64)
= wp (x) = 24qlgll (x4 —2ax® + a3x) + %:55 (a—x)
Substituting for the constants ¢1 and c3 from equation (9.63) into Eqn. (9.62) for ¢, yields,
3 2 3
qo X ax a qo 3 2 3
57 = — - — _— = - 4)C = 9.
b =5 (6 1 +24) 24011( 6ax* +.”) o)

The maximum vertical defection w,,. is obtained by evaluating the deflection wy at the mid-span
x=a/2

4 4 4
a qgo [(a* 2a* a qo a (a
max = =/ = — 5 T 5 —\|= 9.66
w Wo(z) 24D1; (16 g © 2)+2KA552 (2) {59,
which simplifies to
5qoa* qoa’

max = + 9.67
v 384D 8K Ass 067

S— ——

CLPT prediction Shear deformation
maximum deflection
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The maximum deflection can be written as

2
’ qoa
Wimax = Wiax T 8K Ass (968)
where w/,,. = 5qoa*/(384D1,) is the classical laminated plate theory prediction for the maximum
deflection.
The maximum deflection w4 can be expressed as
Wmax = Winayx (1+5) (9.69)

where the coefficient S captures the contribution of shear deformation to the overall deflection and is

defined as
_ qan . 1 _ qoaz ' 384D, _ 48D, (9.70)
8KAs5 Wpax 8KAss 5goa* 5K Assa? .
In the case of a single orthotropic layer, the bending rigidity D15 is
_1 33\ _1 H\® H\’| ouH°
D11—3Q11 (22—21)—3Q11l(2) —(—2) == (9.71)
and the shear rigidity Ass is
N
(k)
Ass = Z (k41— 2k) Cs5' = G13H 9.72)

k=1

It follows from equations (9.70), (9.71) and (9.72) that for a single orthotropic plate,

8 2
s=_2Du___4Oufl” _[2)(0u)H (9.73)
5KAssa? 5K (G1zH) a? 5K \Gi3) \ a

The contribution from the shear deformation can be large when,

1. Q11/G1zis large, i.e.,, when the transverse shear modulus is small compared the in-plane Young's
modulus

In the case of a unidirectional IM7-8552 carbon fiber reinforced ply,

011 = 16844 GPa, G13 = G1, =4.80GPa = % =35.1 (9.74)

13

2. H/a is large, i.e., in the case of thick or moderately thick plates. Assuming a shear correction
factor of K = g,
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2
If % = %) then S = SAK (35.1) (21—0) =0.084, i.e., a 8.4% increase in the deflection.

2
If % = % then S = % (35.1) (11—0) =0.337, i.e., a 33.7% increase in deflection!

Normalized
deflection

384D, ,
5qoa*

3D Elasticity solution

Wmax

FSDTK =1

|

i CLPT i

5 10 20
Length-to-thickness ratio a/H

Figure 9.5: Normalized deflection of a laminated plate for varying length to thickness ratios

In the case of an isotropic material,

E Qu _2(1+v) 2

E
— ,Gi3=G = = = = 9.75
G e G 2(1+v) Giz (1-+2) 1-v 6.79)
In the case of an Aluminum plate with v = %, % = % and an assumed value of K = %,
5=+ (Lu EZ—0029 (9.76)
B 5K Glg a - ’

i.e., a 2.9% increase in deflection due to transverse shear compared to the 33.7% increase for a
unidirectional IM7-8852 plate.
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9.5 Free vibration of symmetric cross ply laminates in cylindrical bending

Consider the cylindrical bending vibration of a simply supported cross-ply laminate shown in Fig.
9.6.

qlx,t) =0

i
= D

a |
Figure 9.6: Free vibration of a simply supported cross-ply laminate
The boundary conditions at x = 0 and x = a are assumed to be,
wo=0, My=0, Ny=0, vo=0, ¢,=0 (9.77)
In the case of a symmetric cross-ply laminate
Al =A2% =0, A455=0, B;j=0, Dig=Dyxp=0 (9.78)
We assume that

90) _
0y B

The mid-surface deflection wo(x, ) and rotation ¢, (x, ) are assumed to have the following forms

0, wuog(x)=0, vo(x)=0, ¢,(x)=0 (9.79)

. mnax
wo (x,1) = W, sin e'v?

. (9.80)
oy (x,1) = D, cos MAX piwt
a
where the integer m defines the mode shape.
9.5.1 Strains
The strains follow from the definition and Eqn. (9.80) as,
g0=0, £5=0, %,=0 (9.81a)
owg
Yyz = ¢y + E =0 (9.81b)

Yxz = ¢x t lx = [<I>m + Wi (%)] cos %e”‘” (9.81¢)
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The «’s follow from the definitions and and Eqn. (9.80)

ey =00 g (@) sin 27X giwt (9.82a)
ox a a
3
Ky = aiyy ) (9.82b)

0 0
9
Kxy = %"ﬁ/ " ;ﬁ -0 (9.82¢)
y X

9.5.2 Force and moment resultants

The force and moment resultants follow from the definitions (9.14), the strains (9.81) and the «’s (9.82)

Ny=Ny =Ny =0 (9.83a)

Mx = D11Kx = _Dllq)m (@) sin mﬂxeiwl (983]3)
a a

]\4y = D12Kx = —Duq)m (m) sin mnxeiwz (983C)
a a

M,y =0 (9.83d)

The transverse shear force resultants follow from (9.22) and the transverse shear strains (9.81)

0
-_— O . .
Vx AT Ass Yxz
It follows from equation (9.84) that
Vy=0 (9.85a)

V, = KAssy,, = K Ass [CI)m W, (@)] cos TXX giwt (9.85b)
a a
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9.5.3 Equations of motion

The equation of motion (9.37a) is identically satisfied since

0 0
0 2 2
N O Do Lx / Satisfied (9.86a)

0x dy or?

Similarly, the equation of motion (9.37b) is identically satisfied

0

0
N~ N, e achy -
— o I Py ]{ v/ Satisfied (9.86b)

The equation of motion (9.37¢c) reduces to

0
ov, 0V, 0 62w0
il =]
P Zéy +qeT) =1y 2
= —KAss [d)m + W, (@)] (m;r) sin @e = —I()me2 sin ﬂe"“” (9.86¢)
a a a a
2.2
=>KA55( )(I) +(KA55m d —Iowz) Wm:O
The equation of motion (9.37d) reduces to
oM, a 62 M
I/VV v /1 ¢
ox 2912
2 .
= -D11®D, (@) cos mﬂxe W _ K Ass [(Dm + W (@)] cos T giwt _
a a a a (9.86d)

mrx
— [L®,,w? cos ——e' !
a

m27T2
= D11 5
a

+ KAss — Iza)z) ®,, + KAss (@) Wn=0
a

The equation of motion (9.37e) is identically satisfied

0

0
aMan' _l_;]%/ / %’ % v Satisfied (9.86e)

at2 or?

Equations (9.86¢) and (9.86d) can be written in matrix form as,

(Dn m;rz +KAss — 12“’2) KAss (M) {(Dm} = {O} (9.87)
KAss (%) (KA55 ~fow )
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For a non-tirivial solution, the determinant of the matrix in (9.87) must vanish. Therefore,
2.2 2.2 2.2 2.2
KA55m ;r (Dnm dl +,K4‘¥5§') - (IoDllm ;r +IOKA55+12KA55m ;T )(,z)2
a a a
(9.88)
4 2 2 W
+ Iohw* - %j—z/[ =0
Eqn. (9.88) simplifies to,
2.2 2.2 4.4
1012w4 - (IQD11 X + IpK As5 + IzKA55m ;T ) w2 + KD11A55m Z =0 (989)
a a
which can be expressed as
Dy m*n* K K m?n? D11Ass m*nt
4 11 2 11455
-— —Ass5+—A +K =0 9.90
w (12 2t At A 2)“’ L (9.90)

It is possible to solve Eqn. (9.90) for the natural frequency w,, with shear deformation and rotary inertia
included.

If the rotary inertia is neglected by setting /> = 0 in Eqn. (9.89), we obtain

W2 = « (9.91)

m
IQ(

The natural frequency w,, follows from equation (9.91) as,

D KA 1
e ~ = Wi | —= (9.92)
D11 #5= + KAss 1+S

, m?mn? /Dll
W, = az K (993)

is the natural frequency obtained using the classical laminated plate theory, i.e., no shear deformations,

a

where,

and,
D11 I’I’127T2

S=
K Assa?

(9.94)
is the shear deformation factor. S captures the effect of transverse shear deformations on the natural

frequencies. In the case of a single orthotropic layer,

onH?

D1 =
11 o

Ass = Gi13H (9.95)
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Therefore, it follows from equations (9.95) and (9.94) that,
S_ D11m27r2 _ Q11H3m27r2 _ Q11H2m271'2 _ 71'2 @ E 2m2 (9 96)
© KAssa?  12KGi3Ha?  12KGiza? 12K \Gi3) \a '
[ —
(22)?

The shear deformation factor S increases as Q11/G13, H/a or m increase, i.e., if G13 is small and/or the
plate is moderately thick and/or higher modes. As § increases, the natural frequency w,, decreases,

i.e., shear deformation decreases the natural frequency as shown in Fig. 9.7.

CLPT

Normalized 1t

natural
frequency
a2 IO
Wm m2r? | Dy, 4 CLPT + Rotary inertia
o FSDT + Rotary inertia

10 20 30 40
Length-to-thickness ratio a/H

Figure 9.7: Normalized natural frequency for varying length to thickness ratio

9.6 Navier solution for cross ply laminates

Consider the bending of cross-ply rectangular laminates that are simply supported on all edges.

For a rectangular cross-ply laminate,

A6 =A% =0, Big=Bx=0, Dig=D2x=0, Ay=0 (9.97)
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The boundary conditions at x = 0 and x = a are,

wo=0, M,=0, Ny=0, vo=0, ¢,=0 (9.98)
The boundary conditions at y =0 and y = b are,
wo=0, My=0, Ny,=0, up=0, ¢,=0 (9.99)
The Navier solution for the plate bending is,
The loads g (x, y) are expanded as a double Fourier series as,
q(x,y) = Z Z Omn sin 2% gin nZy (9.100a)
m=1 n=1
The displacement ug is expanded as,
ug = Z Z U, cOs % sin ? (9.100b)
m=1 n=1
The displacement vg is expanded as
Vo = Z Z Vinn SIN ? cos ? (9.100c¢)
m=1 n=1
The displacement wy is expanded as
wo = Z Z Wn SIN ? sin ? (9.100d)
m=1 n=1
The rotation ¢, is expanded as,
Z Z mn cos —_— sm ? (9.100e)
m=1 n=1
The rotation ¢, is expanded as,
Z Z " SIN _x cos ? (9.100f)

1
—

m=1n
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As with the classical laminated plate theory, substituting equations (9.100) into the equilibrium equa-

tions will yield a system of equations for Upn, Vinn, Wimnn, Xmn and Y,

Unn 0
Vian 0
[K]5x5 {Win = § Qmn (9.101)
Xonn 0
Yiun 0

The values of Ui, Viun, Winn, Xmn and Y., can be calculated for each m and n.



Sandwich Composites

Sandwich composites are a class of composite materials that consist of two thin laminated face sheets
that are separated by a thick layer of a less dense material known as the core. The face sheets bear most

of the bending loads while the core supports the transverse shear force as shown in Fig. 10.1.

Top face sheet
/ Tension

—P—P—P—P—Pt

Z |
M, L.x Core M, V. szf 74

— —

= = = —

1

\

Bottom face sheet Compression

Figure 10.1: Stresses in the face sheets and core of a sandwich composite

10.1 Geometry and representative properties

10.1.1 Geometry of sandwich composites

The top and bottom face sheets consists of multiple laminae each of thickness . The number of laminae
in the top and bottom face sheets are N; and Ny, respectively. The thickness of the top and face sheets
are,

H;=N;-h

Hp,=Np-h

(10.1)

where H; is the thickness of the top face sheet and H,, is the thickness of the bottom face sheet. The

core is of thickness H...

The total number of layers, including the core, is

N=N,+N,+1 (10.2)

10
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ZNb"jN!‘."'Z T = N, TN, + 1 )
: : H
ZN,+3 — t
Zy, 42 k=N, +2 ] |
A Core
H Midsurface
X c of core

z
N?+1 k o Nb y ¥
zz g Hy
Zl k =1 L 4

Figure 10.2: Sandwich composite layer numbering and interface locations

The layers are numbered from bottom to top with the core numbered N, + 1. The orientations of the
plies are denoted by 6, with k varying from 1 to N, + N; + 1.

The midsurface of the core is taken as the reference surface z = 0. The locations of the interfaces are as
follows:

Bottom facing (1 < k < N, +1)

H.
Zk:_T_Hb"'(k_l)h (103)

Note that the z-coordinate of the bottom surface of the core is

H, Hy,  H,
Ny = =~ Hp+ Nyl = - (10.4)

as expected.

Top facing (N, +2 < k < N + N; +2)

H.
o =5+ (k=Ny=2)h (10.5)
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Note that the z-coordinate of the top surface of the laminate is

H, H, ,
ZN,,+N,+2=7+(%+Nt+2—pl/—2)h=7+Nth=—+Ht (10.6)

as expected.

10.1.2 Representative properties of core materials

The representative density, transverse shear modulus and shear strength for different core materials

are listed below.

(a) Balsa (CK57)

Density p = 150 kg/m?
Shear modulus G, = 58.7 MPa
Shear strength F. = 3.7 MPa

(b) Divinycell foam (H100)

Density p = 100 kg/m?
Shear modulus G. = 50 MPa
Shear strength Fy. = 1.8 MPa

(c) Honeycomb core

Honeycomb cores have different shear moduli in the 1-3 and 2-3 planes where the 1- or L-direction is

the ribbon direction and the 2- or W-direction is the transverse direction.

W-direction (transverse direction)

|2

i, L-direction
(ribbon direction)

Figure 10.3: Honeycomb core
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The properties of Hexcel HRP /F50-45 fiberglass cloth reinforced phenolic resin are,
Density p = 72 kg/m?

Shear modulus in the L-direction G13 = 220 MPa

Shear modulus in the W-direction G,3 = 90 MPa

For reference, the density of carbon fiber reinforced composites is approximately 1600 kg/m?.

10.2 Analysis of sandwich composites

Sandwich composites exhibit significant shear deformation due to their low shear rigidity and high
bending rigidity. Therefore, we use the first order shear deformation to analyze sandwich composite

plates.

10.2.1 Assumptions

The assumptions used for the analysis of sandwich composites are,

1. The face sheets are assumed to be made of the same material with identical properties and ply

thickness 4. The plies are assumed state of plane stress, i.e.,
0,=0, 7;=17,=0 (10.7)

2. The core is assumed to have transverse shear moduli G, and G, in the x — z and y - z planes
respectively. The in-plane elastic moduli and stresses in the core are assumed to be negligible,
i.e.,

9 = O =29 0, 0 =B =6 —0 108)

10.2.2 Analysis of sandwich composites

Sandwich composites are analyzed using the first order shear deformation theory. The displacements
in the FSDT are assumed to be
u=up (x,y) +z¢x (x,y)
v =y (x,y) +2¢y (x,7) (10.9)
w = wo (x,y)
where ug, vo and wy are the mid-surface displacements, and ¢, and ¢, are the rotations of the normals
in the x — z and y — z planes, respectively. The through-thickness variation of the displacement u is

shown in Fig. 10.4.
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“surface

“~Displacement u

Ny, plies

Figure 10.4: Kinematics of a sandwich composite

10.2.3 In-plane and bending rigidities

In order to analyze a sandwich composite plate using FSDT, we first need to calculate the ABD matrix
of laminate rigidiites and the transverse shear rigidities A4, Ass and Ags.

The [Q] for the facing plies are calculated as before. The contribution of the core to the bending

rigidities of sandwich composites is neglected by setting [Q] of the core is set equal to zero, i.e.,

2] W o) (10.10)

Therefore, the A, B and D matrices are evaluated as follows

Np+Np+1

—1(k) —_1(k)
[A] = Z (zke1 —21) |Q|  + Z (Zk+1 — 2k) [Q]
k=1 - k=Np+2
Np, . Np+Np+1
1 —1(k) 1 —1(&)
Bl=5(da-2)[2] +5 Y. (da-2)[2] (10.11)
=1 : k=Np+2
Np, . Np+Np+1
1% = 1 s =1
o118 (-1 () o
=1 : k=Np+2

10.2.4 Transverse shear rigidities and shear force resultants

Shear correction factors are not used for sandwich composites since the shear stress and shear strain
are fairly constant throughout the thickness of the core as shown in Fig. 10.5. In other words, the shear

correction factor



10 Sandwich Composites 163

K=1 (10.12)

Furthermore, the transverse shear stresses in the facings are assumed to be negligible. The transverse

ZL Core p
T T T T T T T I\sz

Figure 10.5: Transverse shear stress distribution in a sandwich composite

{T)’Z} - {')’yz} (10.13)
Txz Vxz

where G, ; and G are the transverse shear modului of the core in the x — z and y — z planes, respectively.

shear stresses in the core are
Gy, O

0 Gy

It follows from equation (10.13) that the transverse shear force resultants

H./2

1% A O

vl Dzl g, o [244 Vyz (10.14)

Vx Txz 0 A55 Yxz

"He /2
where

A = H.G
44 v2 (10.15)
A55:Hchz

Note that the transverse shear rigidity A4s = 0 since it is assumed that the principal material directions
of the core are parallel to the x or y directions, i.e. §¥»*1 equals 0° or 90°.

Once we have the rigidities [A], [B], [D], A4 and Ass, we can use the first order shear deformation

theory to analyze sandwich composites by setting the shear correction factor K = 1.

EXAMPLE 10.1: Cylindrical bending of a symmetric cross-ply sandwich composite plate

Consider the cylindrical bending of a symmetric cross-ply sandwich composite that is simply sup-
ported and subjected to a uniformly distributed load as shown in Fig. 10.6.
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Figure 10.6: Simply supported sandwich composite subjected to a uniform distributed load

An example of a symmetric cross-ply sandwich composite is: [0/90/0/ core/0/90/0].
—— S~——
Bottom Top

In the case of a symmetric sandwich composite with cross-ply laminated face sheets,
[B] =[0], Ai6=A26=0, Di16=D2=0 (10.16)

The transverse shear rigidities are
Ay = HcGyZI Ass = HCGXZI A45 =0 (1017)

The same solution process used earlier to analyze the bending problem using the first order shear
deformation theory is used for the analysis of sandwich composite plates. In the case of a simply
supported sandwich composite plate in cylindrical bending, the maximum deflection for a uniformly

distributed load is
5qoa*  qoa® 5qoa*  qoa®

max — = 10.18
w 384Dy, | 8KAs 384Dy,  8Ass )

where the shear correction factor K = 1.
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Abaqus Tutorial

A.1 Problem Description

Consider the cross-ply asymmetric laminated square plate shown in Fig. A.1 of length a = 0.3 m
in the x-direction and width » = 0.3 m in the y-direction. The laminated plate is made of IM7 /8552
unidirectional carbon fiber-reinforced plies whose properties are listed in Sec. 1.10.1. The laminate has a
stacking sequence of [02/90,] with plies of thickness 4 = 0.2 mm each. The laminated plate is subjected
to a concentrated point load of magnitude P = 1N acting vertically downward atx = a/4 = 0.075 m
and y = b/2=0.15m.

Figure A.1: [0,/90;] laminate under a point load

The laminated plates is supported by S, simply supported on all edges, i.e.,

wo=0,M,=0,N,=0,vpg=0 at x=0, a
wo=0, My,=0,u=0,N,=0 at y=0,b

(A1)

We are interested in evaluating the following,
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1. the maximum vertical deflection of the plate
2. through-thickness variation of stresses at the center of the plate

3. through-thickness variation of the failure index at the center of the plate

The finite element analysis of the laminated composite plate will be performed using Abaqus. The
finite element model is created using the Abaqus/CAE (Complete Abaqus Environment) graphical
user interface. The preprocessing, simulation and postprocessing are performed using modules as
described in the following sections.

NOTES

e Abaqus does not have any default or built-in system of units. Make sure you use consistent units
to specify input data. In this tutorial, we will use SI units of kg, m and s. Accordingly, the mass
density is specified in kg/ m?3, force in N, elastic moduli and stresses in Pa and energy in J.

A.2 Abaqus/CAE startup

After starting Abaqus/CAE, the Start Session dialog box will appear. The Create Model Database
startup option will allow you to begin a new analysis. Select With Standard/Explicit Model as shown
in Fig. A.2.

3¢ Start Session *

Create Model Database

438 With Standard/Explicit Model

= With Blectromagnetic Model

[ OpenDatabase =\ Run Script

T Abaqus/CAE
2020 Student Edition

>
PS simuLiAa

Figure A.2: Abaqus startup screen

That will open the main window as shown in Fig. A.3.
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Title bar Menu bar Toolbars Context bar
2 MiaqusiCAE Sudent Edition 202 & o M
File Model Viewport View Port Shope Festyre Jool: Phugins Hep X7
LEewst S99 0 [k Ha T ¢ LB EAIBOD
LR eoe K BB T Pondctoie: Mg+
i TR vobie i vacet a1 1] boe o
5 Model Databi] & @
(e 1 2] Viewport 1 CEg
4 i,
@ =
&1y
&
B8 Field Output Requests 'f- o=
By Hesory Output Requesss [l B4,
o T
| 22
B Contact Contrals s
{F Contact Inbskestiond | 20" 4
§f ComtSabicuions | 3 F¢
<] Constraiets
{B Connector Sections o
F Fieks
P ampinude
[ Loads
B Bcs
B Predefined Faelds
g Rermesing Fues
BX Optimiation Tasks
1, Stesches
A8 Annctations L
8F Ansis 4
£ ok
By Aduptiity Processes
B Co-execut tions
8T Optimization Processes
75 simauLia
o Ti G e ZaCabare, VA M el
RS S v e L g ey
- !
Model tree/ Toolbox area Message area or Promptarea  Canvas and Viewport
Results tree command line interface drawing area

Figure A.3: Abaqus main window

Click File — Set Work Directory to choose the work directory to save the model and output files as

shown in Fig. A 4.

= Set Work Directory >

Current work directorny:
D:M\ABACUS\Work_Dir

Mew work directory:
DhABACUS Y Work_Directory

Mote: In file selection dialog boxes, you can
click the work directory icon to jump Fad
to the current work directory.

Cancel

Figure A.4: Setting the work directory

Click File — Save to save the model. You will be asked to enter a file name when you save the model

for the first time as shown in Fig. A.5.
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s Sawve Model Database As =
Directory: | [[ Work_Directory e Al B e 8 EE [

& .

File Mame: | ABAQUS Plate Model OK

File Filter: | Model Database (*.cae®) e Cancel

Figure A.5: Saving the model

It is recommended that you save the model periodically so that you don’t lose your work.

Abaqus/CAE is divided into units called modules with each module containing only those tools that

are relevant to the specific portion of the modeling task. You can select a module from the Module list
as shown in Fig. A.6.

Property
FAssembly
Step
Interaction
Load

Mesh
Optirnization
lob
Visualization
Sketch

Figure A.6: Abaqus modules

A.3 Module: Part
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Upon startup, Abaqus/CAE enters the Part module by default. In the Part module, you will find the

toolbox area with a set of icons. Click on the % icon to open the Create Part dialog box shown in Fig.
A7.

ol
w
MName: | Laminated_Plate

Meodeling Space

Module: ’ﬁ @® 30 O 2D Planar O Axisymmetric

@ E Type Options
ﬁ. 1 /L'— (@ Deformable
2 (O Discrete rigid " e
g one available
., i@. . (O Analytical rigid
@‘ ‘4?;‘- (O Eulerian
__1| _JJ_:|‘ Base Feature
j Shape Type
O solid
@ Shell Extrusion
Revolution
O Wire
Sweep
O Point

Approximate size: | 2

Figure A.7: Create Part dialog box

In the Create Part dialog box,

e Name the part, e.g., Laminated_Plate

e Choose the 3D, Deformable, Shell and Planar options

¢ In the Approximate size text field, type 2.0 for the size of the drawing canvas so that is bigger

than the largest dimension of the plate which is 0.3 m
e Click Continue to exit the Create Part dialog box
T

Abaqus/CAE enters the Sketcher and creates a Sketcher grid. Click on the L+ and draw a rectangle
or a square as shown in Fig. A.8.
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Module: |2 Part v

Figure A.8: Drawing a rectangle

After drawing the rectangle, use the Add Dimension tool */}\ to dimension the width and height of
the rectangle. Click on the top or bottom horizontal edge and enter a new dimension of 0.3 m in the
prompt area. Click on the left or right vertical edge and enter a new dimension of 0.3 m in the prompt
area. The dimensions of the rectangle should match the dimensions of the plate as shown in Fig. A.9.

Module: |2 Part M

Figure A.9: Dimensioning the rectangle

After dimensioning the sketch, click the Esc key on your keyboard then click on Done in the prompt
area to exit the Sketcher. You should now see a rectangular part in the Part module as shown in Fig.

A.10. This represents the mid-surface of the laminated composite plate.
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Figure A.10: Rectangular part representing laminate mid-surface

A.4 Module: Property

In this module the properties of the plies will be entered into Abaqus and the composite layup, or ply
orientations, created. Switch from the Part to the Property module in the Context bar.

A.4.1 Defining material properties

To create a material corresponding to the fiber-reinforced plies, under the Property module, click on

(o)
the Create Material tool Kg\ icon and the Edit Material dialog box appears as shown in A.11. Name
the material, e.g., IM7_8552.

We will use the properties of IM7/8552 unidirectional carbon fiber-reinforced laminae listed in Sec.
1.10.1. Enter the ply mass density by clicking on General — Mass Density. The density is not needed

for static problems, but needs to be specified for vibration and dynamic problems.



Module: | Property v

@=

Figure A.11: Mass density

—
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3 Edn Materal x
Mame: | M7_s552

Description: P

Materia] Behaviors

General  Mechanical Thermal Electrical/Magnesic  Dther v
Density

Distibution: | Unifgem “ a

[ Use temperaiure-dependent data

Number of field varisbles 0

Data

Mass
Density

Next, click on Mechanical — Elasticity — Elastic to enter the elastic properties of the laminae. In

the Type drop-down menu choose Lamina as shown in Fig. A.12. Enter the lamina properties E1, E3,
v12, G12. The transverse shear moduli G13, G23 also need to be specified although they do not have a
significantly influence on the response of thin laminates. They are necessary to capture the transverse

shear deformation effects for moderately thick laminates. You can enter approximate values for G13,

Go3 if they unknown.

3 Edit Matesial
Mame: | IM7_8552
Description:

Material Behaviors

Density

General  Mechanical Thermal Electrical/Magnetic  Qther 4

Elastic

Type: | Lamina b
[ Use temperature-dependent data
Hurnber of field variables: 0F
Moduli time scale (for viscodlasticity)
[ Mo compression
[ Me tensien

Data

E1 E2
1 167.4E9 10.3E5

: Long-term

0K

Nul2

* Suboptions

G12 G13 G23

e 4t

Cancel

Figure A.12: Lamina elastic properties

In order to perform failure analysis the material strength data needs to be entered. Select the Subop-
tions menu on the far right of Type: Lamina and choose Fail Stress. In the Suboption Editor dialog
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box that opens, enter the tensile strength Fi; in the fiber direction, the compressive strength Fi. in
the fiber direction, the tensile strength F>; in the transverse direction, the compressive strength F;,.
in the transverse direction and the shear strength F¢ as shown in Fig. A.13. In the case of Tsai-Wu
failure theory, enter the cross product coefficient fi/+/fi1 /2. In the absence of biaxial experimental
data, a value of —0.5 is normally assumed for the cross product coefficient. If the equibiaxial strength
of the lamina is known, the cross product coefficient can be left blank and the biaxial stress limit o4
entered in the last column.

-
-

Name: | IM7_8552

Description:

Material Behaviors

Density
Elastic

General  Mechd . g1, otion Editor x v
Elastic Fail Stress

Type: |Lamina | [7] Use temperature-dependent data ¥ Suboptions
[ Use temperstu|  Number of field varisbles:

MNurnber of field vi Data

Maduli time scale Ten Stress Com Stress Ten Stress Com Stress Shear Cross-Prod Stress

[ Fiber Dir Fiber Dir Transv Dir Transw Dir Strength Term Coeff Limit
I Mo compressi 4 272366 16896 B4.1E6 199,866 92.3E6 05
[] Me tension
Data
B
1 167459 oK Cancel

oK Cancel

Figure A.13: Specifying failure properties
Click OK on all the dialog boxes to save the material properties.
A.4.2 Define the composite layup

Click on the E icon in the Property module to create the composite layup. The Create Composite
Layup dialog box shown in Fig. A.14 will open. Name the layup, e.g., Laminate_Lay_up, specify an
Initial ply count of 4, choose Conventional Shell for Element Type and click Continue.



A Abaqus Tutorial | 175

4F Create Composite Layup X
Mame: | Laminate_Lay_up
Initial ply count: 43

Element Type

Conventional Shell

Continuum Shell
Solid

Figure A.14: Create composite layup layup dialog box

In the Edit Composite Layup dialog box that appears next we can specify the stacking sequence, or
the orientation of the plies. First a global/datum coordinate system needs to be specified. Under Layup

Orientation, click on the drop-down menu under Definition and choose Coordinate System. Next
click on A as shown in Fig. A.15 to create datum coordinate system.

Layup Orientation

Definition: | Coordinate system “ =

Not selected yet [ @

Mormal direction: () Axis 1 () Axis 2 (@) Axis 3
Additional rotation: @ None ) Angle: 0 (O Distribution: &

Figure A.15: Specify datum coordinate system for layup

This will open the Create Datum CSYS dialog box. Name the datum coordinate system, e.g., Datum,
and choose Rectangular to create a Cartesian coordinate system as shown in Fig. A.16.

'JL B O

Mame: Datum

Coordinate System Type
(® Rectangular

(O Cylindrical

(O Spherical

Continue... Cancel

Figure A.16: Create datum coordinate system dialog box
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In the mid-surface geometry, choose the bottom left corner (point number 1) in Fig. A.17 as the origin.
Next, for the point on the x axis, choose point number 2. Finally, for the point in the x — y plane, pick

point number 3. This will create the datum coordinate system. Click Cancel to exit the Create Datum
CSYS dialog.

o — Crovta Daturn

Figure A.17: Module "Property": Layup creation datum creation

Once the datum coordinate system has been created, Abaqus will return to the Edit Composite Layup

dialog as shown in Fig. A.18. Next, click on k next to Datum and select the datum coordinate system

you just created as the reference coordinate system for specifying the ply orientations.
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5 Edit Composite Layup X
Name: Laminate_Lay_up

Element type: Conventional Shell Description:

Layup Orientation

Definition: | Coordinate system v &

Datum [y L

Normal direction: (O Axis 1 () Axis 2 @ Axis 3
Additional rotation: ® None (O Angle: 0 () Distribution: &

Section integration: (® During analysis () Before analysis
Thickness integration rule: @ Simpson O Gauss

Plies Offset Shell Parameters  Display

[[] Make calculated sections symmetric O . = = S =h = ) | &
Ply Name Region Material Thickness csys R"A:“;::“ '"'gf":’"
14 Ply-1 (Picked) IMT7_8552 0.0002 <Layup> 0 3
2¢ P2 (Picked) IM7_8552 0.0002 <Layup> 0 3
3¢ Ply3 {Picked) IM7_8552 0.0002 <Layup> 90 3
4v Py (Picked) IM7_8552 0.0002 <> HENE

0K Cancel

Figure A.18: Specifying the composite layup

Specify the ply layup as follows,

e Choose the Region column heading and select the enter part.

e Choose the Material column heading and select IM7_8552 as shown in Fig. A.19.

e Choose the Thickness column heading and enter 2E-3 (i.e., 2 mm) for ply thickness

e Under Rotation angle enter the orientation of each ply relative to the datum coordinate system
as shown in Fig. A.18. You will notice that as orientation of each ply is specified, the principal
material coordinate system of the ply will be displayed in the Viewport relative to the global
datum coordinate system selected as shown in Fig. A.20.
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& Select Material x

For Plies Material
e L

Ply-2
Ply-3
Ply-4

Figure A.19: Select ply material

(a) 0° ply (b) 90° ply

Figure A.20: Orientation of principal material coordinate system relative to the datum reference
coordinate system

Click OK to exit the Edit Composite Layup dialog after you have specified the ply orientations.
You can view the full stacking sequence that you just created to verify the ply orientations by clicking

on the 0 icon in the top toolbar of your screen. A Query window will appear as shown in Fig. A.21.
Click on Ply stack plot and the select the part in the Viewport as the region for which the composite
layup is to be shown. This will display the stacking sequence as shown in Fig. A.21.
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B B 6K ) (8 2 Popery o 1+
hiodert 1 purt [ Laminsted pite ]

Layup: “Laminate_Lay_up"
3  Total thickness: 0.000800.
2Plot of plies 1 to 4, of 4.

1

Figure A.21: Stacking sequence visualization

A.5 Module: Assembly

¢
Switch to the Assembly module, to create one instance of the plate you created. Click first on the %
icon. Then, fill the Create Instance dialog box that shows, as shown in Fig. A.22, as follows,

e Under the Create instance from: option, choose Parts
e Under Parts, pick the part you created, e.g., Laminated_Plate
e Under Instance Type, choose Independent (mesh or instance)
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2 Creste Instance

Create instances from:
@Pat: (O Models
Parts

Laminated_Plate

Instance Type
(O Dependent (mesh on part)

Note: To change a Dependent instance's
mesh, you must edit its part's mesh.

[ Auto-offset from other instances

pply Cancel

Figure A.22: Assembly creation

Click OK to finish creating the instance.

A.6 Module: Step

Switch to the Step module to create an analysis step. In this module, click on the m icon. The
Create Step dialog box, shown in Fig. A.23, will appear

e Enter a name for the analysis step, e.g., Static_Analysis
e Under Procedure type: General, choose Static, General for a static analysis run.
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S+ Create Step x

Mame: | Static_Analysis

Insert new step after

Procedure type:  General I

Dynamic, Temp-disp, Explicit "
Geostatic

Heat transfer

Mass diffusion

Soils

Static, General
Static, Riks W
< >

Continue... Cancel

Figure A.23: Create Step dialog box

When you click OK, the Edit Step dialog box will open. Click OK to proceed with the default values.

Abaqus/CAE writes the results of the analysis to the output database (.odb) file. A list of preselected
variables are written by default to the output database. In the case of composite materials, we need
to specify addition variables to obtain the through-thickness variation of stresses and failure index.

P9
Click on the Create Field Output 11510 icon to open the Create Field dialog box shown in Fig. A.24.
Complete the dialog box as follows,

¢ Give a name to the additional field outputs, e.g., Composite_Field_Outputs
e Under Step, select the step you created, e.g., Static_Analysis
¢ Click Continue....

&= Create Field X

MName: | Composite_Field_Outputs
Step: | Static_Analysis ~

Procedure: Static, General

Figure A.24: Create Field dialog box
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The Edit Field Output Request dialog box will then appear as shown in Fig. A.25. Select the following

options to choose the required field outputs for the laminate analysis,

e Under Domain, choose Composite layup

e In the Output Variables block, select Stresses, Strains and Failure/Fracture to get the corre-

sponding outputs through the thickness.

¢ In the Output at Section Points block, select All section points in all plies

% Edit Field Qutput Request

Name: Composite_Field_Outputs

Step: Static_Analysis

Procedure: Static, General

Domain: Composite layup | :| Laminated_Plate-1.Laminate_Lay_up
Frequency: Every nincrements el oz |1

Timing: | Qutput at exact times
Element cutput position: Integration points

Output Variables
(®) Select from list below (O Preselected defaults () All () Edit variables

ALPHA ALPHAN, CFAILURE, C511, CTSHR DAMAGEC, DAMAGEFC, DAMAGEFT, DAMAGEMC, DAMAGEMT, DAMAGESHR, DAMAGET,[

-

Streszes

Strains

[ Displacement/Velocity/Acceleration
[[] Forces/Reactions

[] Connector

[JEnergy

Failure/Fracture

[ Thermal

[ Electrical/Magnetic

[ Parous media/Fluids

[[] Velume/Thickness/Coordinates
[ Error indicators

[ State/Field/User/ Time

[1 Velume Fraction

v W VW VW VY vV vV VvV VYVYYVYTYT

-

Qutput at Section Points
() Selected points for each phy:
O antsma Ilphe;
(O Specify:
Include local coordinate directions when available

Cancel

OK

Figure A.25: Create new field output request

Click OK to exit the field output request dialog box.

A.7 Module: Load

Switch to the Load module to prescribe the loads and boundary conditions.
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A.7.1 Loads

In this problem a point load is applied. In order to create a point load, we need to first define a point in

the geometric domain before we can apply a concentrated load at that point. This is accomplished by

partitioning the geometry. Note that it is better to first partition the geometry before specifying the

boundary conditions since partitioning the plate will segment the boundaries.

Click on the IZ’I__I icon in the toolbox area to partition a face. The process to partition the plate is as

follows,

Select the right vertical edge of the plate to be the vertical right edge in the Sketcher when
partition the face as shown in Fig. A.26(a)

Click on the N icon and draw a vertical line as shown in Fig. A.26(b). Click on the Esc key on
your keyboard after drawing the line. Notice the "V" letter in Fig. A.26(b) stands for Vertical

Click on the -Z\'f icon to draw the horizontal line of the partition as shown in Fig. A.26(c). Click
on the Esc key on your keyboard after drawing the line. Notice the "H" letter in Fig. A.26(c)
stands for Horizontal

Dimension your partition by clicking on the */\ icon. Note that the point of intersection of the
two lines will serve as the point of application of the concentrated load. Click on the line and
the edge of the plate you are dimensioning with respect to, enter the dimension and press Enter
on your keyboard after each dimension is entered. Click on the Esc key on your keyboard after
entering both dimensions. The result is shown in Fig. A.26(d). Note that the dimension "0.07"
is actually "0.075" which corresponds to a/4 but Abaqus has limited default decimal precision
output

Click on Done on the left of the prompt bar to finish the partition.

The final partitioned plate is shown in Fig. A.26(e).
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] o e——————

(a) Choosing the right view edge to partition (b) Drawing the first line in the partition of the plate

(c) Drawing the second line in the partition of the plate  (d) Dimensioning the partition

(e) Final view of the partitioned plate

Figure A.26: Plate partitoning process

To create the point load, click on the IEZ and fill the Create Load dialog box as shown in Fig. A.27,

Give a name to the load to be applied, e.g., Point_Load

Under Category, choose Mechanical

Under Types for Selected Step, choose Concentrated force

Click Continue... on the bottom left of the dialog window
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Mame: | Point_Load

Step: | Static_Analysis

Procedure: Static, General

Category
(® Mechanical

Thermal

Fluid
() Electrical/Magnetic
Mass diffusion

() Other

Figure A.27: Create Load dialog box

| Concentrated force )

Types for Selected Step

Moment

Pressure

Shell edge load

Surface traction

Pipe pressure

Body force

Line load

Gravity

Bolt load ¥

Cancel

In the Viewport, click on the point of intersection of all the partitions of the plate, where the load is to

be applied, as shown in Fig. A.28. Next, click on Done on the left of the prompt bar.

Figure A.28: Selecting the point of application of the concentrated load

The Edit Load dialog box will appear as shown in Fig. A.29. Complete the dialog box as follows,
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e Under CF1 and CF2 enter respectively the x and y components of the load which are both 0
e Under CF3 enter the z component of the load which is —1 (Newtons)

& Edit Load x

Mame: Point_Load

Type:  Concentrated force

Step: Static_Analysis (Static, General)
Region: Set-1

CSYS: (Global) [3 L

Distribution: | Uniform v
CF1: 0
CF2: 0
CF3: -1
Amplitude: | (Ramp) M Po

] Follow nodal rotation

Note: Force will be applied per node.

oK Cancel

Figure A.29: Concentrated load properties

After finishing the load creation, if you rotate the model using the rotation tool ( in the menu bar,

you can view the concentrated force as shown in Fig. A.30.

Figure A.30: Module "Load": Final view
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A.7.2 Boundary conditions

To create the S; boundary conditions on the edges, click on the Dz% icon. Complete the Create
Boundary Conditions dialog box, as shown in Fig. A.31,

¢ Give a name to the boundary condition, e.g., S$2_BC_x_0a

e Under Category, choose Mechanical
e Under Types for Selected Step, choose Displacement/Rotation to restrain the appropriate mid-

surface displacements and rotations on the simply supported edges

&= Create Boundary Condition *

Mame: I 52 _BC x 0a

Step: |Static_Ana|ysis iv

Procedure: Static, General

Category Types for Selected Step

(® Mechanical | Syrnmetry/ Antisymmetry/Encastre

(O Electrical/Magnetic | Displacement/Rotation
O Other Velocity/Angular velocity
Connector displacement

Connector velecity

:Cont[nue...i | Cancel |

Figure A.31: S> boundary conditions creation on the edges x = 0, a dialog box

Pick the edges where this boundary condition will be applied as shown in Fig. A.32. Note to select
multiple edges, press and hold the Shift key on your keyboard to select all the edges.

Figure A.32: x = 0, a sides selection
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Then, click on Done on the left of the prompt bar. The Edit Boundary Conditions dialog box will

appear as shown in Fig. A.33. Fill the dialog box as follows,

o Select U2 and U3 which represent respectively v and wy

o Set the values to 0 since they are restrained in S; boundary conditions
e Click on OK on the bottom left of the dialog box.

&
MName:
Type:
Step:

Region:

S2_BC x 0a
Displacement/Rotation
Static_Analysis (Static, General)
Set-1

CS¥s: (Globaly [y L

Distribution: | Uniform o fx
Ot

u2: 0

U3: 0

[CJuUR: radians
CJur2: radians
[ uUR3: radians
Amplitude: | (Ramp) e f’\:

Note: The displacement value will be

maintained in subsequent steps,

oK Cancel

Figure A.33: S; boundary conditions atx =0, a

Repeat the process for the edges y = 0 and y = b, where Us = 0 and U; = 0 (i.e., up = 0) instead of

U, =0.

A.8 Module: Mesh

Switch to the Mesh module. We note that the Abaqus student edition limits the simulation to a maxi-

mum of 1000 nodes. Therefore, the number of elements is chosen accordingly. In practical applications,

it is important to perform a convergence analysis by increasing the number of elements. This can be

done using the research edition of Abaqus which does not restrict the number of nodes. Since the

purpose of this tutorial is to provide an overview of the modeling process, we will perform the analysis

using a fixed number of nodes.

First, you should choose the element type. Click on the Assign Element Type

T
1

Hsar

2 ¢ |

Bl icon. Next, select

the entire plate when prompted for the region to be assigned an element type and click Done. This
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will open the Element Type dialog box as shown in Fig. A.34 will appear. We will use the default S4R
element (4-node doubly curved thin or thick shell with reduced integration). Click OK and Done.

% Element Type *
Element Library Family
@ Standard () Explicit Mernbrane e
Surface
‘Geomnetric Order Shear Panel
® Linear O Quadratic v
Quad  Tri

B4 Reduced integration
Elernent Cantrols
Membrane strains: (®) Finite ) Small
Mernbrane hourglass stiffness:
Bending hourglass stiffness:
Drilling hourglass scaling factor: (@) Use default O Specify

Viscosity: (®) Use default () Specify

54R: A 4-node doubly curved thin or thick shell, reduced integration, hourglass centrol, finite membrane strains,

Hote: To select an element shape for meshing,
select “Mesh-» Controls” from the main menu bar.

QK Defaults Cancel

Figure A.34: Module "Mesh": Element type

You will need to seed the edges of the model to create a mesh. Click on the & icon to starting seeding
the edges. Then, select the four edge segments shown in bold red line in Fig. A.35. You can press and
hold the Shift key to select multiple edges. Note that different numbers of seeding points will be used
for the other edge segments which are of different length.



A Abaqus Tutorial | 190

Figure A.35: Selecting the edges to seed

After selecting the four edge segments to be seeded, click Done on the left of the prompt bar. The Local
Seeds dialog box shown in Fig. A.36 will then appear. Fill the dialog box as follows,

e Under Method, choose By number to seed with numbers of elements instead of sizes of elements

e For Number of elements, we recommend entering 15 to get 15 elements along each of the chosen
edges

e Click OK on the bottom left of the dialog box.
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' % Local Seeds X
Constraints
Method Bias
®) By size @) Mone () Single () Double

(®) By number

Sizing Controls

MNumber of elements: 155

Set Creation

[[] Create set with name: | Edge Seeds-1

OK Apply Defaults Cancel
I =

Figure A.36: Edge seeding dialog box

This process is repeated for the other four edge segments corresponding to y = 0 and y = b. We
recommend 7 elements for the shorter edge segments that extend from x = 0 to a/4 and 21 elements for
the longer edges from x = a/4 to a. Click Done after seeding all the edges.

Next, to make sure the mesh is structured, i.e., the mid-point of the plate corresponds to a node for

T

example, click on the Assign Mesh Controls B8 icon. Then, select the whole plate, i.e., all partitions,
and press Enter on your keyboard. The dialog box shown in Fig. A.37 will appear. Fill the dialog box
as follows,

e Under Element Shape, choose Quad so that your mesh is exclusively quadrilateral elements
e Under Technique, choose Structured to obtain a structured mesh with elements arranged in a
regular grid
allle p g
-

Element Shape
(® Quad () Quad-dominated () Tri

Technique Algorithm Options
Minimize the mesh transition Q7
() Free |:|
(®) Structured
() Sweep |:|

Redefine Region Corners...

Ok Defaults Cancel

Figure A.37: Finite element mesh controls
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Finally, click on the Mesh Part Instance & icon in the toolbox area and click OK when prompted to
mesh the part instance. The instance is then meshed, and the result should look similar to the mesh
shown in Fig. A.38 if the same number of edge seeds were used.

Figure A.38: Finite element mesh consisting of four-noded elements

A.9 Module: Job

Switch to the Job module to create an analysis job to perform the simulation. Click on the 1 icon
in the toolbar area to open the Create Job dialog box. Enter a name for the job, e.g., Laminate_Job, as
shown in Fig. A.39 and click Continue... on the bottom left of the dialog box. This will open the Edit
Job dialog box. Click OK to proceed with the default options.
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et R o1 - [y A M b |

Module: I: Job

~ Model: [T Model-1 || s

% Create Job

Mame: | Laminate_lob

Source: |Model

Model-1 DL G

Continue... Cancel

Figure A.39: Job creation

To submit the job, click on the [===l icon in the toolbar area to open the Job Manager dialog box shown
in Fig. A.40. Choose the job and click on Submit to perform the finite element analysis.

aF Job Manager X

Name Model Type Status

Laminate_Job Model-1 Full Analysis None Data Check

Monitor...

Copy... Rename... Delete... Dismiss

Figure A.40: Job submission

After the run Status shows Completed, click on Results to view the results.

A.10 Module: Visualization

Now that we have performed the analysis, we can postprocess the data and visualize the results. The
meshed plate, shown in Fig. A.41, will appear at first.
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Figure A.41: Visualization module initial view

A.10.1 Displacements

In order to plot the deformed configuration, click on the Plot Contours on Deformed Shape k icon.
Then, to specifically view the vertical displacement, i.e., U3 in Abaqus, go to the context bar, choose U
and U3 to visualize the vertical displacements, shown in Fig. A.42. It can be seen that the maximum
deflection is —6.637 x 10~* m. The deformed shape of the plate is shown as well.

N T DOOK ) B wa v 24 @000 +c<i8i

0 i~ e @ OwE

B Visualization defauits [+ [ ~

Mudulc[:v\su.\i;mcn H Modatl:waaAﬂus{wm_mmmymmmm_inn.pdb g

a5 ED

U, u3
— +0,000e+00
-5.531e-05

AT AT AL ALT AT AL
2
Ll

Figure A.42: Module "Visualization": Deflection U3
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A.10.2 Probing for values

To be able to extract the displacement value at a specific point, you need to probe the value. If the
vertical displacement of the middle of the plate is to be determined for example, go to the menu bar,
under Tools — Query, the dialog box shown in Fig. A.43 appears.

e
= Query =4
General Queries

Mode

Distance

Angle

Mesh

Element

Mass properties
Element face normal

Vizualization Module Queries

Stress linearization

Active elements
Active nodes

Ply stack plot

Figure A.43: Query dialog box

In this dialog box, click on Probe values to be able to pick nodes with your cursor on the plate geometry
and get their properties. After clicking on Probe values, another dialog box, shown in Fig. A.44, will
appear. Under Probe, choose Nodes to probe nodal values.
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A
w
Field Qutput...
ofa Step: 1, Static_Analysis Frame: 1

B Field output variable for Probe: U, U3

Probe Values

(®) Select from viewport (O Key-in label () Select a display group

PruheComponents: Selected ™

Value for Attached elements: 406
[T Partinstance NodelD Orig. Coords Def.Coords Attached elements U, U3

LAMINATED PL 6 03,03,0  03,0.3,4.96. 406 4.96369¢:38 = CUrrent cursor position
O I LAMINATED_PL, 56 0150150  0.15,0.15-0.0 210, 225,616,631 -0.0005915

Selected node

Note: Click on respective check button to annotate values in viewer

Write to File... Cancel

Figure A.44: Probing for values dialog box

As you move your cursor on the plate, the node properties of the node corresponding to your current
cursor position will show in the Probe Values dialog box. If you click on a node, i.e., select a node, its
properties will be fixed as shown in Fig. A.44. Each column corresponds to a property of the node as
follows,

Node ID represents the node number in the mesh created by Abaqus

Orig. Coords represents the undeformed, i.e., original, coordinates of the node

Def. Coords represents the coordinates of the node after deformation

Attached elements represents the element numbers, i.e., ID’s, of the elements connected to this
node

U, U3 represents the vertical displacement of the node

Note that U, U3 was a part of the probe values because it was selected earlier in the context bar as
shown in Fig. A.42. The variable you choose in the context bar will appear as a column in the Probe
Values dialog box. It can be seen in Fig. A.44 that the vertical displacement at the middle of the plate is
of —0.000591554 m or 0.000591554 m downwards.
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A.10.3 Stresses

To plot the stresses, go to the context bar and change U and U3 to S and S11. Note that S11 corresponds
to o in the material coordinate system and S22 corresponds to o» in the material coordinate system.
The stress depends on the through-thickness location of a point, i.e., the z coordinate. To choose where
you want the stress plot, go to the menu bar under Results — Section Points. The dialog box shown

in Fig. A.45 appears. Under Selection method choose Plies to pick stress plotting locations based on
the plies.

o
>

Selection method: () Categories @) Plies

Plies

MName Filter

PLY-2
PLY-3
PLY-4

Ply result location: () Bottommast
O Middle/Single section point
@ Topmost
(@] Topmost and bottormmost

0K Apply Defaults Field Output.. Cancel

Figure A.45: Dialog box to choose the stress location to plot

To plot the stress at the top of the first ply, select the following in the dialog box shown in Fig. A.45,

o Choose PLY-1

e Under Ply result location, choose Topmost

The result is shown in Fig. A.46
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',_Primar}r s e i Q;\ ; @ @ m @

Visualization defaults @ -

Module: |: Visualization ~ Model |: D:/ABAQUS Work_Directory/Laminate_lob.odb

e
=° S, S11
B B PLY-1 (top)
fo. (Avg: 75%)
By, % +8.404e+05
EI—}}‘HE:.EE +7.703e+05
]‘3,: !lE::: +7001e+05
K +6.300e+05
2 +5.599e+05
B g +4.898e+05
o +4.197e+05
o~ ES +3.496e+05
= +2.795e+05
" +2.094e+05

=5 +1.393e+05

v +6.915e+04
L, -9.659e+02
4=

Figure A.46: Stress S11 variation on the top surface of the first ply in the laminate

Note if you choose under Ply result location the option Topmost and bottommost, the result will
show a plate where the contour on the top surface corresponds to the distribution of S11 on the top
surface of the corresponding ply and the bottom side contour corresponds to the stress distribution on

the bottom surface of the ply.

A.10.4 Through-thickness plots

To plot the through thickness variation of a parameter at a certain point, go to the menu bar, then go
under Tools — xy Data — Create.... The Create XY Data dialog box shown on the left of Fig. A.47,
will appear.

e Under Source, choose Thickness which means you want the through thickness plots
e Click on Continue... at the bottom left of the dialog box

The XY Data From Shell Thickness dialog box will appear. Under the tab Variables, check the
following,

¢ Under Position, choose Element Nodal, to pick a location by specifying a corresponding element

ID of an element connected to the node at this location
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e Under Click checkboxes or edit the identifiers shown next to Edit below., check S11 for oy,
and later TSAIW: Tsai-Wu failure measure for the Tsai-Wu failure index

Since the middle of the plate is defined by a node of ID 56, Fig. A.44, and one of the elements connected

to it has an ID of 210, under the Elements tab of the XY Data From Shell Thickness dialog box shown
in Fig. A.47,

¢ Go to the Elements portion

e Under Method, choose Element labels to choose the location by the label of an element connected
to the node at the location

o Under Element labels, enter the element ID of an element connected to the node located at the
middle of the plate, e.g., 210
e Click on Plot at the middle of the bottom of the dialog box

Y
-
w L

Variables  Elements Variables Elements

Output Variables Selection
0. y Position: ElementNodal v Method reErrE | e
2 iy Click checkboxes or edit the identifiers shown next to Edit below, it | Hereritee
Source P LI PS: Stress in the elastic-plastic network A LAMINATED_PLA]
O'C')'D'B 'hiét'nry éuiphﬁ v @ Satress components
ODB history output P
O oDBfield output [ Max In-Plane Principal
@) Thickness (7] Max. In-Plane Principal (Abs)
- Min. In-Plane Principal T
O Free bod o P Highlight items in viewport
o Y » [ Out-of-Plane Principal » [0 Highii 3
() Operate on XY data
O ASCll file
O Keyboard
(O Path

Continue... Cancel

Edit: | S.511

Save Plot Dismiss
Save Plot Dismiss

Figure A.47: Steps to plot the through thickness variation of 511

Figure A.48 shows the result of the plot. As it can be seen there are four superimposed plots each

corresponding to a node of element 210. To see only the curve corresponding to the mid-point, we
need to delete the other three curves.
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0.60

0.40

Thickness

0.20 G

0.00L1 . 1 . I . I . I i I
-3.0 -2.0 -1.0 0.0 1.0 2.0 [x1.E6]

Stress

—— 5:511 thickness PI: LAMINATED_PLATE-1 E: 210 N: 55
—— 8:S11 thickness PI: LAMINATED PLATE-1 E: 210 N: 56
—— S8:S11 thickness PI: LAMINATED PLATE-1 E: 210 N: 339
—— $:511 thickness PI: LAMINATED_PLATE-1 E: 210 N: 353

Figure A.48: S11 plots corresponding to the four nodes attached to element 210

To delete the curves that are not needed, go to the menu bar under Tools — xy Data — Manage, then

the window shown in Fig. A.49 will appear.

e Select, as shown, the XY data not corresponding to the mid-point, i.e., curves for the other three
nodes in element 210 that are not node 56

e Click on Delete...

¢ In the dialog box that shows up, click on Yes

e Close XY Data Manager dialog box

2= XY Data Manager X
Data Source Create...

(® Current session () Current ODB: Laminate Job.odb

Name Description

_5:511 thickness PI: LA From Field Data: $:511 thickness at part instance LAMINATED_PLATE-1 element 210 node 55 U
_5:511 thickness Pl: LA From Field Data: 5:S11 thickness at part instance LAMINATED_PLATE-1 element 210 node 56

_5:511 thickness Pl: LA From Field Data: 5:511 thickness at part instance LAMINATED _PLATE-1 element 210 node 339

_5:511 thickness Pl: LA From Field Data: 5:511 thickness at part instance LAMINATED_PLATE-1 element 210 node 353

Copy to ODB...
Dismiss

Figure A.49: Deleting the plots at the nodes connected to element 210, other than node 56
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Figure A.50: Through-thickness variation of the stress component S11 at the center of the plate

In Abaqus, the failure index R is defined as the scaling factor such that, for a given stress state

{0-110—2/ T12}1 o on T
1 02 T2
— =2 221 A2

& ( R'"R'R ) (A2)
where g(o1, 02, 112) is defined in (2.41). Note that the scaling factor 1/R multiplies all of the stress
components simultaneously such that the resulting stress state lies on the failure envelope. If the failure

index R < 1, then the stress state lies within the failure envelope. Values of R > 1 indicate failure.
By definition, the failure index R is the reciprocal of the safety factor S, i.e,

1
Sta

R =

(A.3)

The through-thickness variation of the Tsai-Wu failure index R can be plotted using a process similar
to that for the stresses as shown in Fig. A.51

A
L4

S XY Data From Shell Thickness b Variables Elements
Selection
Variables  Elements
S Create XY Dat 5 Method Add Row, | Delete Row
5 Create ata QOutput Variabls
T hiny e Pick from viewport | [ partinstance  Element labels
Seaig Position: Element Nodal lementicbels [EURRIREREN - o
BB e Element sets
(D008 history output Click checkboxes or edit the identifiers shown next to Edit below. Inteinal sets
() ODB field cutput e 7
@ Thickness » [ssave: Average membrane and transverse shear stress
O Free body p [ THE: Thermal strain components ] Fighight Rems mviewport
. [ TRIAX: Stress triaxiality .
(O Operate on XY data
) ASCl file ] TSAIH: Tsai-Hill failure measure
O Keyboard TSAIW: Tsai-Wu failure measure
O Path [CI TSHR13: Transverse shear stress
[C1 TSHR23: Transverse shear stress v
Continue... Cancel g
Edit: | TSAIW
Save Plot Dismiss
Save Plot Dismiss.

Figure A.51: Steps to plot the through thickness variation of the Tsai-Wu failure index
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After deleting the additional curves at the other nodes of element 210, we obtain the through-thickness

variation shown in Fig. A.52.

[x1.E-3]
0.80

o_4ok—

Thickness

0.00 L I 1 L I i
1.0 2.0 3.0 4.0 5.0 6.0

TSAIW

7.0 [x1.E-3]

‘7 TSAIW thickness PI: LAMINATED_PLATE-1 E: 210 N: 56 ‘

Figure A.52: Through-thickness variation of the Tsai-Wu failure index at the middle of the laminated
plate

The Tsai-Wu theory predicts that the laminated plate will not fail since R < 1 throughout.



Matlab Code for Laminated Composite Structures

B.1 Material Properties

Unidirectional carbon fiber-reinforced composite

function [El,nul2,E2,G12,F1t,Flc,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties

o ° o ° O o° ° o ° o o°

o°

G12
F1t
Flc
F2t
F2c
F6

o 0° °® ° ° o ° O ° o°

o°

o°

o

N

Syntax:
El,nul2,E2,G12,F1t,Flc,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties

Output:
E1 - Young’s modulus in the 1-direction

Inputs: None

Assigns material properties in the principal material directions

nul2 - major Poisson’s ratio
E2 - Young’s modulus in the 2-direction

inplane shear modulus

The
The
The
The
The

tensile strength in the 1l-material direction
compressive strength in the 1-material direction
tensile strength in the 2-material direction
compressive strength in the 2-material direction
shear strength in the 1-2 material plane

Note 1 and 2 are the principal material directions.
Typically E1,E2,G12,F1t,F2t,F2t, F2c and F6 are specified in SI units of Pa.

Author: Senthil S. Vel, University of Maine

See also ReducedStiffness, ReducedCompliance, OffAxisStiffness, OffAxisCompliance.

Representative elastic properties of an IM7/8552 unidireciontal
s fiber-reinforced carbon fiber composite

s The Young’s moduli and shear moduli are in Pa
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El = 167.4e9;
nul2 = 0.30;
E2 = 10.3e9;
G12 = 6.4e9;

% Representative strengths of a lamina in Pa

F1t = 2723e6;
Flc = 1689e6;
F2t = 64.1e6;
F2c = 199.8e6;
F6 = 92.3e6;

% Density in kg/m"3
rho = 1588;

% Ply thickness in meters
h = 0.2e-3;

% Print lamina properties

fprintf(’Elastic moduli of the composite material: \n')
fprintf(’ E1 = %g GPa \n’',E1/1e9)

fprintf(’ nul2 = %g \n’,nul2)

fprintf(’ E2 = %g GPa \n’,E2/1e9)

fprintf(’ G12 = %g GPa \n’,G12/1e9)

fprintf(’Strengths of the composite material: \n’)
fprintf(’ F1t = %g MPa \n',F1lt/le6)

fprintf(’ Flc = %g MPa \n',Flc/le6)

fprintf(’ F2t = %g MPa \n’,F2t/1le6)

fprintf(’ F2c= %g MPa \n’,F2c/1le6)

fprintf(’ F6 = %g MPa \n’,F6/1e6)

fprintf(’'Density: \n’)
fprintf(’ rho = %g kg/m*3 \n’,rho)

fprintf('Ply thickness: \n")
fprintf(’ h = %g mm \n\n’',h/le-3)
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B.2 Lamina Functions

Reduced stiffness matrix [Q]

205

function Q = ReducedStiffness(El,nul2,E2,G12)
s ReducedStiffness calculates the plane stress reduced elastic

N

N

s stiffness matrix [Q] for a composite lamina.

o°

o°

Syntax:
Q = ReducedStiffness(El,nul2,E2,G12)

o® o°

o°

Inputs:

o°

E1l - Young’'s modulus in the 1-direction

o°

nul2 - major Poisson’s ratio

o°

E2 - Young’s modulus in the 2-direction

o°

G12 - inplane shear modulus

o°

Note 1 and 2 are the principal material directions.

o°

Typically E1, E2 and G1l2 are specified in SI units of Pa.

o°

o°

Output:
Q - 3x3 reduced stiffness matrix for a composite lamina

o® o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also ReducedCompliance, OffAxisStiffness, OffAxisCompliance.

o°

Calculate the minor Poisson’s ratio using the reciprocal relations
nu2l = nul2xE2/E1;

o°

Evaluate the elements of the reduced stiffness matrix

Q11 = E1/(1-nul2*nu2l);

Q12 = nul2xE2/(1-nul2*nu2l);
Q22 = E2/(1-nul2x*nu2l);

066 = G12;

o°

Arrange the elements to form the reduced stiffness matrix [Q]
Q = [Q11 Q12 o;

Q12 Q22 0;

0 0 Q66];

end
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Reduced compliance matrix [S]

206

function S = ReducedCompliance(El,nul2,E2,G12)
ReducedCompliance calculates the plane stress reduced elastic

o°

o°

compliance matrix [S] for a composite lamina.

o°

o°

Syntax:
S = ReducedCompliance(El,nul2,E2,G12)

o o°

o°

Inputs:

o°

E1 - Young’s modulus in the 1-direction

o°

nul2 - major Poisson’s ratio

o°

E2 - Young’s modulus in the 2-direction

o°

G1l2 - inplane shear modulus

o°

Note 1 and 2 are the principal material directions.

o°

Typically E1, E2 and G12 are specified in SI units of Pa.

o°

o°

Output:
S - 3x3 reduced complaince matrix for a composite lamina.

o o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also ReducedStiffness, OffAxisStiffness, OffAxisCompliance.

o°

Evaluate the elements of the reduced compliance matrix

S11 = 1/E1;

S12 = -nul2/E1;
S22 = 1/E2;

S66 = 1/G12;

o°

Arrange the elements to form the reduced compliance matrix [S]
S = [S11 S12 o0;

S12 S22 0;

0 0 S66];

end

Off-axis stiffness matrix [Q]

function QBar = OffAxisStiffness(Q,Theta)
% OffAxisStiffness calculates the plane stress reduced elastic
% stiffness matrix [QBar] for an off-axis composite lamina.

)
)
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Syntax:
QBar = OffAxisStiffness(Q,Theta)

Inputs:
Q - 3x3 plane-stress reduced stiffness matrix for a composite lamina

Theta - Angle in degrees from the x-axis to the 1-axis (CCW positive)

Output:
QBar - 3x3 reduced stiffness matrix for an off-axis lamina

Author: Senthil S. Vel, University of Maine

See also ReducedCompliance, ReducedStiffness, OffAxisCompliance.
Cosine and Sine of the angle
m = cosd(Theta);

n = sind(Theta);

2D reduced stiffness matrix (Q) values extraction
Q11 = Q(1,1); Q12 = Q(1,2); Q22 = Q(2,2); Q66 = Q(3,3);

Calculate the off-axis stiffnesses QBar
QBarll = Q1l1xm™4+2x(Q1l2+2xQ66)*xm~2xn"2+Q22*xn"4;

QBarl2 = (Q11+Q22-4%Q66)*m™2xn"2+Q12*x(m~4+n"4);
QBarl6 = (Q11-Q12-2%Q66)*n*m~3+(Q12-Q22+2xQ66)*n"3*m;
QBar22 = Q11xn"4+2%(Q12+2%Q66)*n"2*xm"2+Q22xm"4;
QBar26 = (Q11-Q12-2x%Q66)*n"3*m+(Q12-Q22+2*Q66)*n*m"3;
QBar66 = (Q11+Q22-2%Q12-2%xQ66)*n"2xm"~2+Q66* (n"~4+m™4);

Assemble the QBar matrix

QBar =[QBarll QBarl2 QBarlé6;
QBarl2 QBar22 QBar26;
QBarl6 QBar26 QBar66];

end

Off-axis compliance matrix [S]

207

function SBar = OffAxisCompliance(S,Theta)

°

©

® o° o°

o°

0ffAxisCompliance calculates the plane stress reduced elastic

compliance matrix [SBar] for an off-axis composite lamina.

Syntax:
SBar = O0ffAxisCompliance(S,Theta)
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Inputs:
S - 3x3 plane-stress reduced compliance matrix for a composite lamina
Theta - Angle in degrees from the x-axis to the 1l-axis (CCW positive)

Output:
SBar - 3x3 reduced complaince matrix for an off-axis lamina

Author: Senthil S. Vel, University of Maine

See also ReducedCompliance, ReducedStiffness, OffAxisStiffness.
Cosine and Sine of the angle
m = cosd(Theta);

n = sind(Theta);

2D reduced compliance matrix (S) values extraction
S11 = S(1,1); S12 = S(1,2); S22 = S(2,2); S66 = S(3,3);

Calculate the off-axis compliances SBar
SBarll = S11+m™4+(2%xS12+S66)*m"2xn"2+S522*n"4;

SBarl2 = (S11+522-S66)*m"2xn~2+S12%(m~4+n"4);
SBarle = (2%S11-2%512-5S66)*n*xm™3+(2%xS12-2%x522+566)*n"3*m;
SBar22 = S11xn"4+(2%S512+566)*n"2xm"2+522xm"4;
SBar26 = (2*xS11-2%S12-566)*n"3xm+(2+xS12-2%x522+566)*xn*m"3;
SBar66 = 2x*(2+xS11+2%522-4xS12-S66)*n"2*m"2+S66* (n~4+m™4) ;

Assemble the SBar matrix

SBar =[SBarll SBarl2 SBarlé6;
SBarl2 SBar22 SBar26;
SBarlé SBar26 SBar66];

end

Stress transformation matrix [7,]

208

function Ts=StressTransformationMatrix(Theta)

N

°

o

©

® o o° o°

o°

StressTransformationMatrix computes the 2D stress coordinate
transformation matrix based on the Voigt notation (T_sigma)

Syntax:
Ts = StressTransformationMatrix(Theta)

Inputs:
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o°

Theta - Rotation angle in degrees

o°

o°

Output:
Ts - 3x3 2D stress coordinate transformation matrix

o°

o°

(based on the Voigt notation)

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

InverseStrainTransformationMatrix

N

s Cosine and Sine of the angle
m = cosd(Theta);
n = sind(Theta);

% Stress transformation matrix T_sigma
Ts =[ m*2 n"2 2 m*n;
n~2 m"2 -2xmxn;

-m*n mxn m"2-n"2];

end

Strain transformation matrix 7]

See also InverseStressTransformationMatrix, StrainTransformationMatrix,
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function Te=StrainTransformationMatrix(Theta)

N

s StrainTransformationMatrix computes the 2D strain coordinate

o

s transformation matrix based on the Voigt notation (T_epsilon)

o°

o°

Syntax:

o°

Te = StrainTransformationMatrix(Theta)

o°

o°

Inputs:

o°

Theta - Rotation angle in degrees

o°

o°

Output:
Te - 3x3 2D strain coordinate transformation matrix

o°

o°

(based on the Voigt notation)

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

InverseStrainTransformationMatrix

N

s Cosine and Sine of the angle

See also InverseStressTransformationMatrix, StressTransformationMatrix,
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cosd(Theta);
sind(Theta);

3
Il

% Strain transformation matrix T_epsilon
Te =[ m"2 n"2 m=n;
n"2 m~2 -mxn;
-2%mxn  2xmxn  m*"2-n"2 1;

end

Inverse stress transformation matrix [7,,]~!

function [Tsinv]=InverseStressTransformationMatrix(Theta)

o

s InverseStressTransformationMatrix computes the inverse of the

o

5 2D stress coordinate transformation matrix based on the

o°

Voigt notation (T_sigma)

o°

o°

Syntax:

o°

Tsinv = InverseStressTransformationMatrix(Theta)

o°

o°

Inputs:

o°

Theta - Rotation angle in degrees

o°

o°

Output:
Tsinv - 3x3 inverse of the 2D stress coordinate transformation matrix

o°

o°

(for the Voigt notation case)

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also StrainTransformationMatrix, StressTransformationMatrix,
InverseStrainTransformationMatrix

°

s Cosine and Sine of the angle
m = cosd(Theta);
n = sind(Theta);

5 Inverse of the stress transformation matrix

N

Tsinv =[m"2 n"2 -2%m*n;
n~2 m”™2 2%m*n;
mx*n -mxn m~2-n"21;

end
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Inverse strain transformation matrix [7,]~!
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function [Teinv]=InverseStrainTransformationMatrix(Theta)

°

s InverseStrainTransformationMatrix computes the inverse of the

o°

2D strain coordinate transformation matrix based on the

o°

Voigt notation (T_epsilon)

o°

o°

Syntax:

o°

Teinv = InverseStrainTransformationMatrix(Theta)

o°

o°

Inputs:

o°

Theta - Rotation angle in degrees

o°

o°

Output:
Teinv - 3x3 inverse of the 2D strain coordinate transformation matrix

o°

o°

(for the Voigt notation case)

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also StrainTransformationMatrix, StressTransformationMatrix,

InverseStressTransformationMatrix

o°

Cosine and Sine of the angle
m = cosd(Theta);

n sind(Theta);

°

s Inverse of the strain transformation matrix
Teinv =[m"2 n"2 -m*n;

n"2 m™2 m*n;

2xmkn - 2xmxn m*2-n"2];

end

Lamina engineering properties

function [EX,nuxy,Ey,Gxy] = LaminaEngProperties(El,nul2,E2,G12,Theta)

N

s LaminaEngProperties calculates engineering properties for an off-axis lamina

o°

o°

Syntax:

o°

[Ex,nuxy,Ey,Gxy] = LaminaEngProperties(E1,nul2,E2,G12,Theta)

o°

o°

Inputs:

o°

E1l - Young’s modulus in the 1-direction
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o°

nul2 - major Poisson’s ratio

o°

E2 - Young'’s modulus in the 2-direction

o°

G12 - inplane shear modulus

o°

Theta - Angle in degrees from the x-axis to the 1l-axis (CCW positive)

o°

Note 1 and 2 are the principal material directions.

o°

Typically E1, E2 and G12 are specified in SI units of Pa.

o°

o°

Output:
Ex - Young’s modulus in the x-direction

o°

o°

nuxy - Poisson’s ratio of an off-axis lamina

o°

Ey - Young’s modulus in the y-direction

o°

Gxy - in-plane shear modulus of an off-axis lamina

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also ReducedCompliance, ReducedStiffness, OffAxisCompliance, O0ffAxisStiffness

N

s Calculate the reduced compliance matrix S
S = ReducedCompliance(El,nul2,E2,G12);

°

s Calculate the off-axis reduced compliance matrix SBar
SBar = OffAxisCompliance(S,Theta);

SBarll = SBar(1,1);
SBarl2 = SBar(1,2);
SBar22 = SBar(2,2);
SBar66 = SBar(3,3);

% Calculate the effective engineering properties of an off-axis lamina
Ex 1/SBarll;

Ey 1/SBar22;

nuxy = -SBarl2/SBarll;

Gxy = 1/SBar66;

end

Tsai-Wu failure theory

function [Sfa, Sfr]l=TsaiWu(F1lt,Flc,F2t,F2c,F6,Stressesl1?)
TsaiWu computes the factor of safety for a state of stress (Sfa)

o°

o°

and for the reversed-in-sign state of stress (Sfr) based on the

o°

Tsai-Wu failure theory

o°

o°

Syntax:
[Sfa, Sfr] = TsaiWu(F1lt,Flc,F2t,F2c,F6,Stressesl2)

o°
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o°

o°

Inputs:

o°

F1t - The tensile strength in the 1l-material direction

o°

Flc - The compressive strength in the 1-material direction

o°

F2t - The tensile strength in the 2-material direction

o°

F2c - The compressive strength in the 2-material direction

o°

F6 - The shear strength in the 1-2 material plane

o°

Stressesl2 - State of stress, vector input.

o°

Stressesl2 = [sigma_1l sigma_2 tau_12]’.

o® o°

o°

is required for meaningful results.

o°

o°

Output:
Sfa - factor of safety for the state of stress Stressesl2

o o° o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also StressTransformationMatrix, LaminaEngProperties

°

s Stress components

sigmal = Stressesl2(1);
sigma2 = Stressesl2(2);
taul2 = Stressesl2(3);

% Calculate the Tsai-Wu coefficients
fl = 1/F1t-1/Flc;

11 = 1/(F1t*Flc);

f2 = 1/F2t-1/F2c;

22 = 1/(F2txF2c);

f66 = 1/(F672);

o°

Determine the coefficients a and b
fllxsigmal”2+f22xsigma2”2+f66*xtaul2”2-sqrt(fll+f22)*xsigmalxsigma2;
flxsigmal+f2xsigma2;

[}
Il

% Determine the factor of safety for actual state of stress
Sfa=(-b+sqrt(b”2+4x*a))/(2*a);

% Determine the factor of safety for reversed-in-sign state of stress
Sfr= (-b-sqrt(b”2+4xa))/(2*a);

end

NOTE: Consistency with the units of the strength values and the stress state

213

Sfr - factor of safety for the reversed-in-sign equivalent state of stress Stressesl2
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B.3 Laminate Functions

Laminate ABD matrix

214

function [A,B,D,ABD,a,b,d,abd]=LaminateABD(N,QBarArray,ZArray)
s LaminateABD computes the [A], [B], [D] and [ABD] matrices of a laminate.

N

N

s In addition, it computes the [a], [b], [d] and [abd] matrices where [abd] is
the inverse of [ABD].

o o°

o°

Syntax:
[A,B,D,ABD,a,b,d,abd] = LaminateABD(N,QBarArray,ZArray)

o°® o°

o°

Inputs:

o°

N - Number of layers in the laminate

o°

QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

o°

stiffnesses of the kth layer of the laminate

% ZArray - Array of interface z-coordinates of a laminate
% Output:

% A - [A] matrix (3x3)

% B - [B] matrix (3x3)

% D - [D] matrix (3x3)

o°

ABD - [ABD] matrix (6x6)

[a] matrix (3x3)

[b] matrix (3x3)

[d] matrix (3x3)

abd - [abd] matrix, inverse of ABD (6x6)

o® o° ° o° o°
o T o
' ' :

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also LaminateStrainsXY, LaminateStressesXY, LaminateEngineeringProperties.

°

s Initialize the A, B and D matrices
A=zeros(3,3);
B=zeros(3,3);
D=zeros(3,3);

% Perform layer by layer summation to obtain the A, B and D matrices
for k = 1:N

= A + (ZArray(k+1)-ZArray(k))=*QBarArray{k};

B + (1/2)*((ZArray(k+1))"2-(ZArray(k))~2)*QBarArray{k};

D + (1/3)*((ZArray(k+1))"3-(ZArray(k))~3)*QBarArray{k};

A
B
D

end
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% Arrange the A, B and D into a 6x6 ABD matrix

ABD = [A B;

B DI];

% Find the inverse of the ABD matrix
abd = inv(ABD);

a = abd(1:3,1:3);
b = abd(1:3,4:6);
c = abd(4:6,1:3);
d = abd(4:6,4:6);
end

Midsurface strains and curvatures

215

function [Epsilon®,Kappa] = MidsurfaceStrainsCurvatures(abd,Nx,Ny,Nxy,Mx,My,Mxy)

d® o o° o°

o°

Syntax:

o® o

o°

Inputs:
abd -
Nx -
Ny -

® o° o°

o°

Nxy -
Mx -
My -
Mxy -

d® o o° o°

o°

Output:

o o° o°

o°

Author:

o°

o°

o°

Kappa

s MidsurfaceStrainsCurvatures computes the mid-surface strains and curvatures
of a lamina under loads Nx, Ny and Nxy and moments Mx, My and Mxy based on
s the load-deformation relations: [epsilon,kappal = [abd] [N,M].

[Epsilon0,Kappal = MidsurfaceStrainsCurvatures(abd,Nx,Ny,Nxy,Mx, My, Mxy)

[abd] matrix (i.e. inverse of [ABD]), could be computed using LaminateABD
x-direction axial load (force)

y-direction axial load (force)

xy-plane shear load (force)

Bending moment about the x-axis

Bending moment about the y-axis

Twisting moment

Epsilon® - Computed mid-surface strain of the laminate

- Computed mid-surface curvature of the laminate

Senthil S. Vel, University of Maine

See also LaminateABD, LaminateStrainsXY, LaminateStressesXY.

Create a column array of forces and moments

NM = [Nx Ny Nxy Mx My Mxyl’;

% Determine the midsurface strains and curvatures array

EpsilonKappaArray = abd*NM;
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% Extract the midsurface strains and curvatures
Epsilon@ = EpsilonKappaArray(1:3,1);
Kappa = EpsilonKappaArray(4:6,1);

end

Determine the layer number given the z-coordinate

function LayerNumber = WhichLayer(N,ZArray,z)

°

s LayerNumber determines to which layer of the laminate a point

o°

with a specified z coordinate belongs

o°

o°

Syntax:

o°

LayerNumber = WhichLayer(N,ZArray,z)

o°

o°

Inputs:

o°

N - Number of layers in the laminate

o°

ZArray - Array of interface z coordinates

o°

z - thickness coordinate of the location for which the layer number

o°

is to be determined

o°

o°

Output:
LayerNumber - The layer to which point z belongs to

o°® o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also LaminateABD, LaminateStrainsXY, LaminateEngineeringProperties, LaminateStressesXY.

% Check layer by layer to see if ZArray(k) <= z <= ZArray(k+1)
for k = 1:N
if (z >= ZArray(k)) & (z <= ZArray(k+1))
LayerNumber = k; % assign layer number if ZCoord(k) <= z <= ZCoord(k+1);
end
end

end

Laminate strains

function StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z)
% LaminateStrainsXY computes, for a given mid-surface strain vector
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N

s and mid-surface curvatures vector, the strains at a specified location

o°

(or through-thickness coordinate) z.

o°

o°

Syntax:

o°

StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z)

o°

% Inputs:

% Epsilon® - A 3x1 vector of mid-surface strains

% Kappa - A 3x1 vector of mid-surface curvatures

% z - z-coordinate of the location for calculating the x-y strains
%  Output:

o°

StrainsXY - A 3x1 array of strains in the x-y (global) coordinate system

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also LaminateABD, LaminateStressesXY, LaminateEngineeringProperties.

% Compute the strains based on the Kirchhoff assumptions
StrainsXY = EpsilonO+zx*Kappa;

end

Laminate stresses

217

function StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,z)

o

s LaminateStressesXY computes, for a given mid-surface strain vector

°

s and mid-surface curvatures vector, the stresses at a specified location

o°

(or through-thickness coordinate) z.

o°

o°

Syntax:

o°

StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,z)

o°

o°

Inputs:

o°

QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

o°

stiffnesses of the kth layer of the laminate

o°

ZCoord - Array of interface locations, i.e., the beginning of each

o°

layer of the laminate

o°

Epsilon® - A 3x1 vector of mid-surface strains

% Kappa - A 3x1 vector of mid-surface curvatures
% z - z-coordinate of the location for calculating the x-y stresses
%  Output:

o°

StressesXY - A 3x1 array of stresses in the x-y (global) coordinate system
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o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also LaminateABD, LaminateStrainsXY, LaminateEngineeringProperties, WhichLayer.

°

s Determine the number of layers from the length of the QBar array

=

= length(QBarArray);

o

s Determine which layer the z coordinate belongs to
k = WhichLayer(N,ZArray,z); % layer number

% Determine the strains at the specified z location
StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z);

% Stresses in the x-y coordinate system
StressesXY = QBarArray{k}*StrainsXY;

end

Plot laminate strains

function PlotLaminateStrains(ComponentStr,ThetaArray,ZArray,Epsilon0,Kappa,H)

o°

PlotLaminateStrains plots the through-the-thickness variation

o°

(i.e. as a function of z) of a specifiec strain component in the laminate

o°

o°

Syntax:
PlotLaminateStrains (ComponentStr,ThetaArray,ZArray,Epsilon@,Kappa,H)

o®  o°

o°

Inputs:

o°

ComponentStr - Strain component to be plotted, takes one of the following

o°

character array values:

% in the golbal/structural coordinate system: 'ex’, 'ey’, 'gammaxy’
% in the principal/material coordiante system: ’'el’, 'e2’, 'gammal2’
% ThetaArray - Nx1 vector of layer by layer fiber orientations, where N

% is the number of layers in the laminate.

% ZArray - Array of interface z-coordinates of a laminate

% Epsilon® - Mid-surface strains of the laminate

% Kappa - Mid-surface curvatures of the laminate

% H - Total height, i.e. thickness, of the laminate

%  Output:

o°

No outputs for this function (except the plot outputs as figures)

o°

o°

Author: Senthil S. Vel, University of Maine
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%

% See also LaminateStrainsXY, PlotLaminateStresses, PlotLaminateTsaiWuSfa .

% Read global plot parameters
global LineThickness

% Determine the number of layers from the ThetaArray
N = length(ThetaArray);

% Specify the number of sampling points per layer for the plots
PointsPerLayer = 2;

switch ComponentStr

case 'ex’
CoordinateSystem ='XY’;
Component = 1;
xstr = "Normal strain $\varepsilon_{\textit{x}}$ ($\mu \varepsilon$)’;
FigName = "Normal strain e x’;

case 'ey’
CoordinateSystem ='XY';
Component = 2;
xstr = ’'Normal strain $\varepsilon_{\textit{y}}$ ($\mu \varepsilon$)’;
FigName = 'Normal strain e y’;

case 'gammaxy’
CoordinateSystem ='XY";
Component = 3;
xstr = 'Shear strain $\gamma_{\textit{xy}}$ ($\mu$rad)’;
FigName = ’'Shear strain gamma_xy’;

case 'el’
CoordinateSystem ="12";
Component = 1;

xstr = "Normal strain $\varepsilon_{1}$ ($\mu \varepsilon$)’;
FigName = ’'Normal strain e 1';
case 'e2’

CoordinateSystem ="12";
Component = 2;
xstr = "Normal strain $\varepsilon_{2}$ ($\mu \varepsilon$)’;
FigName = ’'Normal strain e 2’';
case ’'gammal2’
CoordinateSystem ='12";
Component = 3;
xstr = ’Shear strain $\gamma_{12}$ ($\mus$rad)’;
FigName = ’Shear strain gamma_12';
end

219



B Matlab Code for Laminated Composite Structures

% Prepare the figure
figure(’'Name’,FigName);
clf;

hold on;

for k = 1:N
zloc = linspace(ZArray(k),ZArray(k+1),PointsPerLayer);

% Evaluate the strains at the sampling points
for n = 1: PointsPerLayer
switch CoordinateSystem
case XY’
% Evaluate strains in the XY coordinate system
StrainColumnArray = LaminateStrainsXY(Epsilon@,Kappa,zloc(n));
case '12’
% Evaluate strains in the XY coordinate system
StrainsXY = LaminateStrainsXY(Epsilon@,Kappa,zloc(n));
% Transform strains to the 1-2 coordinate system
Te=StrainTransformationMatrix(ThetaArray(k));
StrainColumnArray = TexStrainsXY;
end
% Extract the strain component of interest
Strain(n) = StrainColumnArray(Component);
end

% plot the strain variation in layer k
plot(Strain/le-6,zloc/H, "k-", 'LineWidth’,LineThickness, 'LineJoin’, 'round’);

end
% Insert axes labels
xlabel(xstr, 'Interpreter’, 'latex’);

ylabel('$z/H$’, "Interpreter’, 'latex’);

% Format the laminate plot
FormatLaminatePlot (ZArray)

end

Plot laminate stresses

220

function PlotLaminateStresses(ComponentStr,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

% PlotLaminateStressess plots the through-the-thickness variation
% (i.e. as a function of z) of a specifiec stress component in the laminate



o°

o°

Syntax:

o® o°

o°

Inputs:

o°

ComponentStr -

d® o° o°

o°

ThetaArray -

o°

o°

QBarArray -

o°

o°

ZArray -

o°

Epsilon0® -

o°

Kappa -
H -

o°® o°

o°

Output:

® o o° o°

o°
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PlotLaminateStresses(ComponentStr,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

Stress component to be plotted, takes one of the following
character array values:

’ ’

in the golbal/structural coordinate system: ’sx’, ’'sy’, 'tauxy’
in the principal/material coordiante system: ’'sl’, ’'s2’, ’'taul2’
Nx1 vector of layer fiber orientations, where N is the number
of layers in the laminate.

An array where QBarArray{k} is a 3x3 matrix of off-axis
stiffnesses of the kth layer of the laminate

Array of interface z-coordinates of a laminate

Mid-surface strains of the laminate

Mid-surface curvatures of the laminate

Total height, i.e. thickness, of the laminate

No outputs for this function (except the plot outputs as figures)

Author: Senthil S. Vel, University of Maine

See also LaminateStressesXY, PlotLaminateStrains, PlotLaminateTsaiWuSfr .

% Read global plot parameters

global LineThickness

% Determine the number of layers from the ZArray
N = length(QBarArray);

% Specify the number of sampling points per layer for the plots

PointsPerLayer = 2;

switch ComponentStr

’ ’

case sX

CoordinateSystem ='XY';

Component = 1;
xstr = "Normal stress $\sigma_{\textit{x}}$ (MPa)’;
FigName = 'Normal stress sigma x';

’ ’

case 'sy

CoordinateSystem ="XY';

Component = 2;
xstr = "Normal stress $\sigma_{\textit{y}}$ (MPa)’;
FigName = 'Normal stress sigma_.y’;

221
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case 'tauxy’

case

case

CoordinateSystem ='XY';
Component = 3;
xstr = ’'Shear stress $\tau_{\textit{xy}}$ (MPa)’;
FigName = ’'Shear stress tau_xy’;
"1’
CoordinateSystem ="12";
Component = 1;
xstr = "Normal stress $\sigma_{1}$ (MPa)’;
FigName = "Normal stress sigma_1';
12
CoordinateSystem ="12";
Component = 2;
xstr = "Normal stress $\sigma_{2}$ (MPa)’;

FigName = ’'Normal stress sigma 2';

case ’'taul2’

end

% Clear
figure(’
clf;

hold on;

for k =

o o° o°

o°

zloc

CoordinateSystem ="12";

Component = 3;

xstr = ’'Shear stress $\tau_{12}$ (MPa)’;
FigName = ’Shear stress tau_ 12';

figure and hold while plotting
Name’,FigName) ;

1:N

Sample points from Z(k)-eps to Z(k+l)+eps. The eps is used to

avoid ambiguity of which layer the interface belongs to. Use a very
small value for the parameter eps to ensure points close to the
interfaces are included in the plots

= linspace(ZArray(k)+eps,ZArray(k+1)-eps,PointsPerLayer);

% Evaluate the stresses at the sampling points

for

n = 1: PointsPerLayer
switch CoordinateSystem
case 'XY'
% Evaluate stresses in the XY coordinate system
StressColumnArray = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,zloc(n));
case 12’
% Evaluate stresses in the XY coordinate system
StressesXY = LaminateStressesXY(QBarArray, ZArray,Epsilon0,Kappa,zloc(n));
% Transform stresses to the 1-2 coordinate system
Ts=StressTransformationMatrix(ThetaArray(k));
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StressColumnArray = TsxStressesXY;

end

% Extract the stress component of interest

Stress(n) = StressColumnArray(Component);

end

% plot the stress variation in layer k

hp = plot(Stress/le6,zloc/H, 'k-", 'LineWidth’,LineThickness, 'LineJoin’, "round’);

end

% Insert axes labels

xlabel(xstr, 'Interpreter’, "latex”);
ylabel('$z/HS$’, "Interpreter’, "latex’);

% Format the laminate plot

FormatLaminatePlot(ZArray)

end

Plot Tsai-Wu safety factor S,

function [SfaMin,kmin,zmin] = PlotLaminateTsaiWuSfa(Flt,Flc,F2t,F2c,F6,ThetaArray,QBarArray,
ZArray,Epsilon0,Kappa,H)

N

°

N

©

N

°

o

©

® o ° o ° o ° I ° ° O ° o ° ° o°

o°

PlotLaminateTsaiWuSfa plots the through-the-thickness variation (i.e. as a function of z)

of the Tsai-Wu factor of safety for given mid-surface strains and curvatures in a laminate.

It also outputs the minimum factor of safety, its z-location and the layer of

the laminate it occurs in.

Syntax:

PlotLaminateTsaiWuSfa(Flt,Flc,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,Epsilon0Q,Kappa,H)

Inputs:
F1t
Flc
F2t
F2c
F6
ThetaArray

QBarArray
ZArray

Epsilon®
Kappa

Tensile strength in the 1-direction (principal coordinate system)
Compressive strength in the 1l-direction (principal coordinate system)
Tensile strength in the 2-direction (principal coordinate system)
Compressive strength in the 2-direction (principal coordinate system)
Shear strength in the 1-2 plane (principal coordinate system)

Nx1 vector of layer fiber orientations, where N is the number

of layers in the laminate.

An array where QBarArray{k} is a 3x3 matrix of off-axis

stiffnesses of the kth layer of the laminate

Array of interface z-coordinates of a laminate

Mid-surface strains of the laminate

Mid-surface curvatures of the laminate
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% H - Total height, i.e. thickness, of the laminate

%  Output:

% SfaMin - Minimum Tsai-Wu factor of safety

% kmin - Minimum Tsai-Wu factor of safety layer of occurence

% zmin - Minimum Tsai-Wu factor of safety location (height) of occurence

o°

Also the plots are an output

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also PlotLaminateStresses, PlotLaminateStrains, PlotLaminateTsaiWuSfr .

N

s Read global plot parameters
global LineThickness

% Determine the number of layers from the QBarArray
N = length(QBarArray);

% Specify the number of sampling points per layer for the plots
PointsPerLayer = 500;

% Prepare the figure

figure(’'Name’, 'Safety factor Sfa’);
clf;

hold on;

% Initialize the minimum safety factor value
SfaMin = inf;

for k = 1:N
Sample points from Z(k)-eps to Z(k+1l)+eps. The eps is used to

o°

o°

avoid ambiguity of which layer the interface belongs to. Use a very

o°

small value for the parameter eps to ensure points close to the

o°

interfaces are included in the plots
eps = le-12;
zloc = linspace(ZArray(k)+eps,ZArray(k+1)-eps,PointsPerLayer);

% Evaluate the safety factor at the sampling points
for n = 1: PointsPerLayer
% Evaluate stresses in the XY coordinate system
StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,zloc(n));

% Transform stresses to the 1-2 coordinate system
Ts=StressTransformationMatrix(ThetaArray(k));
Stressesl2 = Ts*StressesXY;

224



end

end
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% Calculate the safety factor
[Sfa(n), Sfr(n)]=TsaiWu(F1lt,Flc,F2t,F2c,F6,Stressesl2);

% Update the min safety factor values
if Sfa(n) < SfaMin

SfaMin = Sfa(n);

zmin = zloc(n);

kmin = k;
end

%SfaMin = min(SfaMin, min(Sfa));

% plot the safety factor variation in layer k

hp =

plot(Sfa,zloc/H, 'k-', 'LineWidth’,LineThickness);

% Insert axes labels
xlabel(’'Safety factor $S_{fa}$’, 'Interpreter’,'latex’);
ylabel('$z/H$’, "Interpreter’, 'latex’);

%

Format the laminate plot

FormatLaminatePlot (ZArray);

end

Plot Tsai-Wu safety factor S,
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function [SfrMin,kmin,zmin] = PlotLaminateTsaiWuSfr(F1lt,Flc,F2t,F2c,F6,ThetaArray,QBarArray,
ZArray,Epsilon0,Kappa,H)

N

©

o

©

°

©

°

©

® o ° o ° o o° o°

o°

of the Tsai-Wu reversed-in-sign factor of safety for given mid-surface strains and
curvatures in a laminate. It also outputs the minimum factor of safety, its
z-location and the layer of the laminate it occurs in.

Syntax:
PlotLaminateTsaiWuSfr(Flt,Flc,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,Epsilon0Q,Kappa,H)

Inputs:
F1t - Tensile strength in the 1-direction (principal coordinate system)
Flc - Compressive strength in the 1-direction (principal coordinate system)
F2t - Tensile strength in the 2-direction (principal coordinate system)
F2c - Compressive strength in the 2-direction (principal coordinate system)

PlotLaminateTsaiWuSfr plots the through-the-thickness variation (i.e. as a function of z)
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o°

F6 - Shear strength in the 1-2 plane (principal coordinate system)

o°

ThetaArray - Nx1 vector of layer fiber orientations, where N is the number

o°

of layers in the laminate.

o°

QBarArray - An array where QBarArray{k} is a 3x3 matrix of off-axis

o°

stiffnesses of the kth layer of the laminate

% ZArray - Array of interface z-coordinates of a laminate

% Epsilon® - Mid-surface strains of the laminate

% Kappa - Mid-surface curvatures of the laminate

% H - Total height, i.e. thickness, of the laminate

% Output:

% SfrMin - Minimum Tsai-Wu factor of safety (reversed-in-sign)

% kmin - Minimum Tsai-Wu factor of safety (reversed-in-sign) layer of occurence

% zmin - Minimum Tsai-Wu factor of safety (reversed-in-sign) location (height) of
occurence

o°

Also the plots are an output

o°

o°

Author: Senthil S. Vel, University of Maine

o°

o°

See also PlotLaminateStresses, PlotLaminateStrains, PlotLaminateTsaiWuSfa .

°

s Read global plot parameters
global LineThickness

% Determine the number of layers from the QBarArray
N = length(QBarArray);

% Specify the number of sampling points per layer for the plots
PointsPerLayer = 500;

% Prepare the figure

figure(’'Name’, 'Reversed-in-sign safety factor |Sfr|’);
clf;

hold on;

% Initialize the minimum safety factor value
SfrMin = inf;

for k = 1:N
Sample points from Z(k)-eps to Z(k+1l)+eps. The eps is used to

o°

o°

avoid ambiguity of which layer the interface belongs to. Use a very

o°

small value for the parameter eps to ensure points close to the

o°

interfaces are included in the plots
eps = le-12;
zloc = linspace(ZArray(k)+eps,ZArray(k+1)-eps,PointsPerlLayer);
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% Evaluate the safety factor at the sampling points
for n = 1: PointsPerlLayer
% Evaluate stresses in the XY coordinate system
StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,zloc(n));

% Transform stresses to the 1-2 coordinate system
Ts=StressTransformationMatrix(ThetaArray(k));
Stressesl2 = Ts*xStressesXY;

% Calculate the safety factor
[Sfa(n), Sfr(n)]=TsaiWu(F1t,Flc,F2t,F2c,F6,Stressesl?);

% Update the min safety factor values
if abs(Sfr(n)) < SfrMin
SfrMin = abs(Sfr(n));
zmin = zloc(n);
kmin = k;
end
end

% plot the safety factor variation in layer k
plot(abs(Sfr),zloc/H, 'k-", 'LineWidth’,LineThickness);

% Insert axes labels
xlabel('Safety factor $|S_{fr}|$’, 'Interpreter’,’'latex’);
ylabel('$z/H$’, "Interpreter’, 'latex’);

% Format the laminate plot

FormatLaminatePlot (ZArray);

end

Format laminate through-thickness plots

227

function FormatLaminatePlot(ZArray)

N

°

® o ° o° o°

o°

FormatLaminatePlot sets up the figure characteristics
for the through-the-thickness plots for a laminate

Syntax:
FormatLaminatePlot (ZArray, FontSize)

Inputs:
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o°

ZArray - Array of interface z-coordinates of a laminate

o°

o°

Output:
No output, the plot through-thickness aesthetics will be modified

o® o°

o°

Author: Senthil S. Vel, University of Maine

% Read global variables
global LineThickness FontSize
global InterfaceLineColor MidsurfaceLineColor VerticalAxisLineColor

N

s Number of layers
= length(ZArray)-1;

=

o

s Laminate thickness
= ZArray(N+1)-ZArray(1);

T

N

s Set the plot box aspect ratio to the golden ratio
pbaspect([1.618 1 1])

% Get axis range

V = axis;

% Change the axis settings to make the figure more readable
ha = gca;

set(ha, 'Box’,"on");

set(ha, 'FontSize’,FontSize);

set(ha, 'LineWidth’,0.7LineThickness);

% Draw the mid-surface

x =[V(1); V(2)]; % The line extends over the entire horizontal range
y = [0;0];

hl = line(x,y);

set(hl,’'LineStyle’,’"--")

set(hl, 'Color’,MidsurfacelLineColor);

set(hl, 'LineWidth’,LineThickness/4);

uistack(hl, "bottom’);

% Plot horizontal lines corresponding to the bottom surface, top
% surface and interface
for k = 2:N

X

[V(1); V(2)]; 9% The line extends over the entire horizontal range
y = [ZArray(k)/H; ZArray(k)/H];

hl = line(x,y);

set(hl, 'Color’,InterfaceLineColor);

228
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set(hl, 'LineWidth’,LineThickness/4);
uistack(hl, "bottom’);
%get(hl)
%set(hl, 'Visible")
end

% Draw the vertical line corresponding to VAxisValue
x =[0; 0];

y
hl = line(x,y);

set(hl, 'LineStyle’,’-")

set(hl, 'Color’,VerticalAxisLineColor);
set(hl, 'LineWidth’,LineThickness/4);
uistack(hl, "bottom’);

[V(3);V(4)]; % The line extends over the entire vertical range

% Show labels for the interface locations if there are less than 10 layers
if N < 10

% Set yticks

yticks(ZArray/H);

% Set ytick labels
[Num,Den]=rat(ZArray/H);
for k = 1:N+1
if Num(k) ==
YTickLabelStr{k} = '0";
else
YTickLabelStr{k} =strcat(num2str(Num(k)),’/’,num2str(Den(k)));
end
yticklabels(YTickLabelStr)
end
else
% Show only the bottom surface, midsurface and top surface labels
% 1f there are more than 10 layers so that the ytick labels are not
% too cluttered.
yticks([-1/2 0 1/2]1);
end

% Reset axis range
axis(V);
end
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B.4 Sample Analysis Scripts

Lamina analysis

230

O3k >k 3k 5k >k >k 3k 5k >k >k 3k 5k sk >k 3k 5k >k 3k 3k 5k >k 3k 3k >k >k 3k 3k ok >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k sk >k 3k 5k >k 3k 3k ok >k 3k 5k >k >k 3k 3k >k >k 3k 5k >k >k 3k >k >k >k %k k

% * Sample lamina analysis script *
% Calculates the response of an off-axis lamina to
% prescribed stresses in the global coordinate system

O3k >k 3k 3k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k 3k 3k 5k >k 3k 3k >k >k 3k 3k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k 3k 3k >k >k 3k 3k >k >k 3k >k >k >k 3k >k >k >k %k k

%% Clear variables and close all figures
clearvars
close all

%% Read lamina properties
[El,nul2,E2,G12,F1t,Flc,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties;

%% Specify the ply orientation in degrees
Theta = 30;
fprintf(’'Lamina orientation theta = %g degrees \n\n’,Theta)

%% Specify the stresses in the X-Y coordinate system
StressesXY = [225; 50; 50]x1e6;

disp(’'Stresses in the X-Y coordinate system (MPa):’)
disp(StressesXY/1le6)

%% Calculate the reduced compliance matrix
S = ReducedCompliance(E1l,nul2,E2,G12);
disp(’Reduced compliance S (TPa™~-1)="); disp([S]*1el2)

%% Calculate the reduced stiffness matrix
Q = ReducedStiffness(E1l,nul2,E2,G12);
disp(’Reduced stiffness Q (GPa) ='); disp([Q]l/1e9)

%% Compute the off-axis reduced compliance matrix
SBar = OffAxisCompliance(S,Theta);

disp(’'Off-axis compliance SBar (TPa™-1)=")
disp([SBar]*1lel2)

%% Compute the off-axis reduced stiffness matrix
QBar = O0ffAxisStiffness(Q,Theta);

disp('Off-axis stiffness QBar (GPa) =")
disp([QBar]l/1e9)
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%% Compute the stress transformation matrix
Ts=StressTransformationMatrix(Theta);
disp(’Stress transformation matrix Ts:')
disp(Ts)

%% Compute the stresses in the 1-2 coordinate system
Stressesl?2 = TsxStressesXY;

disp(’'Stresses in the 1-2 coordinate system (MPa):’)
disp(Stressesl2/1e6)

%% Calculate the strains in the X-Y coordinate system
StrainsXY = SBarxStressesXY;

disp(’'Strains in the X-Y coordinate system (micro m/m):")
disp(StrainsXY/le-6)

%% Compute the strain transformation matrix
Te=StrainTransformationMatrix(Theta);
disp(’'Strain transformation matrix Te:')
disp(Te)

%% Calculate the strains in the 1-2 coordinate system
Strainsl2 = TexStrainsXY;

disp(’'Strains in the 1-2 coordinate system (micro m/m):")
disp(Strainsl2/le-6)

%% Calculate the safety factor using the Tsai-Wu failure theory
[Sfa, Sfrl=TsaiWu(Flt,Flc,F2t,F2c,F6,Stressesl2);

fprintf(’'Tsai-Wu safety factor for actual stress state: Sfa = %g \n\n’,Sfa)
%g \n\n’,Sfr)

fprintf(’'Tsai-Wu safety factor for reversed-in-sign stress state: Sfr

Laminate analysis
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O3k >k 3k 3k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k 3k 3k >k >k 3k 3k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k 3k >k >k 3k 3k >k >k 3k 3k >k >k 3k 5k >k >k K >k >k >k %k k

% * Sample laminate analysis script
% Calculates the response of a representative laminate to
% prescribed force and moment resultants

Dk >k 5k 5k >k >k >k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k >k >k >k 3k 3K 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k >k >k ok 5k 3K 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k >k >k >k >k 5k 3k 3k 3k 3k 3k 3 3k 5k 5k >k >k >k >k

%% Clear variables and close all figures
clearvars
close all
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%% Read lamina properties
[E1l,nul2,E2,G12,F1t,Flc,F2t,F2c,F6,h,rho] = UnidirectionalCarbonEpoxyProperties;

%% Specify the stacking sequence of the plies
ThetaArray = [0 -45 90];
fprintf(’'Laminate stacking sequence Theta = %s (degrees) \n\n’,strcat(’[’,num2str(ThetaArray),’

1))

%% Specify the force resultants per unit width (N/m)

Nx = 0;
Ny = 0;
Nxy = 0;

%% Specify the momment resultants per unit width (N.m/m)

Mx = 1.0;
My = 0;
Mxy = 0;

%% Determine the number of layers
N = length(ThetaArray);
fprintf(’'Number of layers: %g \n\n’,N)

%% Compute total laminate thickness H
H = Nxh;
fprintf(’'Laminate thickness H = %g mm \n\n’,H/le-3)

%% Evaluate laminate interface locations Z k
for k = 1:N+1

ZArray(k)=-H/2+(k-1)*h;
end
%sfprintf(’Laminate interface locations Z = %s mm \n\n',strcat(’[’,num2str(ZCoord/1le-3),’]1"))
disp(’'Laminate interface locations Z (mm) =");
disp(strcat(’'[’,num2str(ZArray/le-3),']1"));disp(" ")

%% Calculate the reduced compliance matrix

S = ReducedCompliance(El,nul2,E2,G12);
disp(’'Reduced compliance matrix S (TPa™-1)=");
disp([S]1*lel2)

%% Calculate the reduced stiffness matrix
Q = ReducedStiffness(E1l,nul2,E2,G12);
disp('Reduced stiffness matrix Q (GPa) =");
disp([Q]/1e9)

%% Compute the off-axis reduced stiffness matrices
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for k = 1:N

QBarArray{k}=0ffAxisStiffness(Q,ThetaArray(k));
disp(strcat(’'0ff-axis stiffness QBar{’,num2str(k),’'} (GPa) ="));
disp(QBarArray{k}/1e9)

end

%% Compute laminate ABD stiffness matrix
[A,B,D,ABD,a,b,d,abd]= LaminateABD(N,QBarArray,ZArray);
disp(’'A (1076 N/m):"), disp(A/le6)

disp('B (N):"), disp(B)

disp('D (10”-3 N-m):"), disp(D/1le-3)

disp('a (107-9 m/N):"), disp(a/le-9)

disp(’'b (107-3 1/N):"), disp(b/1le-3)

disp(’'d (1/N-m):"), disp(d)

%% Compute the midsurface strains and curvatures

[Epsilon®,Kappal = MidsurfaceStrainsCurvatures(abd,Nx,Ny,Nxy,Mx,My,Mxy);
disp('Midsurface strains Epsilon® (micro):")

disp(Epsilon0/1e-6)

disp(’'Midsurface curvatures Kappa (1/m):")

disp(Kappa)

%% Calculate the strains and stresses at the z location of interest
z = H/4; % Sample z-location

fprintf(’z coordinate of interest = %g mm \n\n’,z/le-3)

k = WhichLayer(N,ZArray,z);
fprintf(’z coordinate belongs to layer %g \n\n’, k)

StrainsXY = LaminateStrainsXY(Epsilon0,Kappa,z);

disp(’'StrainsXY at the z location (micro):")

disp(StrainsXY/le-6)

StressesXY = LaminateStressesXY(QBarArray,ZArray,Epsilon0,Kappa,z);
disp(’'StressesXY at the z location (MPa):')

disp(StressesXY/le6)

%% Plot the through-thickness variation of strains
PlotLaminateStrains(’ex’,ThetaArray,ZArray,Epsilon0@,Kappa,H)

PlotLaminateStrains(’ey’,ThetaArray,ZArray,Epsilon@,Kappa,H)
PlotLaminateStrains(’gammaxy’,ThetaArray, ZArray,Epsilon0,Kappa,H)

PlotLaminateStrains(’el’,ThetaArray,ZArray,Epsilon0@,Kappa,H)

233



B Matlab Code for Laminated Composite Structures | 234

PlotLaminateStrains(’e2’,ThetaArray,ZArray,Epsilon@,Kappa,H)
PlotLaminateStrains(’gammal2’,ThetaArray, ZArray,Epsilon0,Kappa,H)

%% Plot the through-thickness variation of stresses
PlotLaminateStresses(’'sx’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

PlotLaminateStresses(’'sy’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)
PlotLaminateStresses(’tauxy’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)
PlotLaminateStresses(’'sl’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)
PlotLaminateStresses(’'s2’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)
PlotLaminateStresses(’'taul2’,ThetaArray,QBarArray,ZArray,Epsilon0,Kappa,H)

%% Plot the through-thickness variation of the safety factor Sfa

[SfaMin, kmin,zmin] = PlotLaminateTsaiWuSfa(F1lt,Flc,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,
Epsilon0@,Kappa,H);

fprintf(’'Minimum laminate safety factor: SfaMin = %g \n’,SfaMin)

fprintf(’'Layer where SfaMin occurs: k = %g \n’,kmin)

fprintf(’'Location where SfaMin occurs: z = %g mm \n\n’,zmin/le-3)

%% Plot the through-thickness variation of the safety factor Sfr

[SfrMin,kmin,zmin] = PlotLaminateTsaiWuSfr(F1lt,Flc,F2t,F2c,F6,ThetaArray,QBarArray,ZArray,
Epsilon®,Kappa,H);

fprintf(’Minimum laminate reversed-in-sign safety factor: |SfrMin| = %g \n’,SfrMin)

fprintf(’'Layer where SfrMin occurs: k = %g \n’,kmin)

fprintf(’'Location where SfrMin occurs: z = %g mm \n\n’,zmin/le-3)
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