

1. Get your Gitlab credentials set up

2. Download GitHub Desktop

3. Create your Personal Access Token

4. Clone the repositories you need and initialize Git LFS

1. Fetch updates from the repo

2. Pull updates from the repo

3. Make a branch for your edits

4. Do work

5. Commit files that you worked on

6. Push updates to your branch, resolving conflicts as needed

7. Request to merge updates on your branch into main

Executive Summary

Onboarding and First Time Setup

Using Git

 Cloning the Repo

 Pulling from the Repo

Branches

 Merging Branches

Organization of Git Repos

Troubleshooting

 1

 2

5

7

7

9

10

11

We are moving away from Subversion (SVN) due to issues with hosting. Instead, we will

now be using GitLab, a Git-based hosting service that is similar in principle to SVN. This

guide details the process to get started with and use our new CAD versioning system and

includes a snapshot of our slightly changed folder structure.

Invitations – The process begins when a team leader invites you to the GitLab

workspace. With your invitation, you will also be assigned one of these permission levels:

• Developer – Able to contribute new files and push to branches but cannot mer ge

into master. Most mechanical members will have this role.

• Maintainer – Able to push to master and deploy to production. Most subteam

leaders will have this role.

• Owner – Can change user permissions and has destructive and awesome powers.

Only top team leaders (tech director / team principal) will have this power.

Set up your account from the invitation email, making sure to set your username to

something recognizable. Also, don’t forget to set your real name as well so we can

recognize you.

Client – We strongly recommend GitHub Desktop as the standard client for team

members. Advanced users can pick their own client or use shell commands like a wizard,

but you’ll be on your own if you run into issues. GitHub Desktop can be downloaded here

for Windows and Mac: desktop.github.com. When you install GitHub Desktop, skip the

option to log in to GitHub. You will use other credentials when you clone repos instead.

Personal Access Key – This key will be your ticket to avoiding entering your username

and password a lot. To create it, navigate to your settings in Gitlab by clicking

Preferences in the top right corner dropdown, then choosing “Access Tokens” on the left.

Enter the name of your token (“github desktop” will do fine) and check the “api” box

below. Leave the expiration field and other checkboxes empty.

Click the blue “Create personal access token” at the bottom. You should then see your

token appear at the top of the form. Copy this token and save it somewhere safe – it

cannot be recovered if lost. You will need this token when you first clone a repo.

Git is similar to Subversion: the repository (repo) is stored on the GitLab server, and you

keep a “working copy” on your machine to make changes.

Cloning (Checking Out) the Repository – In Subversion, we used SVN Checkout to

retrieve a working copy from the repo. In git, the same action is called cloning. In GitHub

Desktop, go to File > Clone Repository (Ctrl + Shift + O on Windows). Select the URL tab

and input the URL of the repository to clone. The easiest way to do this is to navigate to

gitlab.com/wisconsinracing and find the folder you want.

When you click into the folder, hit the blue Clone button on the right. Then, hit the

clipboard icon next to “Clone with HTTPS” to copy the correct URL to the clipboard.

file:///C:/Users/ajkof/Documents/Wisconsin%20Racing/gitlab.com/wisconsinracing

After pasting the URL you just copied into GitHub Desktop, use the box marked “Local

path” to specify where you are cloning the repo. We recommend making a folder called

“git” right next to the folder labeled “svn” on your computer. Within that folder, we

recommend making subfolders for each subgroup you are cloning repos from. This is

clearer when looking at the organization scheme at the end of this guide. Do not change

the name of the subfolder that you are creating by cloning this repo – it may cause

problems for both git and Solidworks.

You will be prompted to enter a username and password. Your username is your GitLab

username. Copy the Personal Access Key you created at the end of the last section and

enter it as your password. The files should then begin to download.

When the download is finished, you will be prompted to initialize Git LFS, a plugin that

helps store binary files, including CAD files. Click Initialize Git LFS.

Pulling (Updating) the Working Copy – To receive updates to the repo, press the Fetch

button at the top of the GitHub Desktop window.

If there are new updates, the Fetch button will switch to a Pull button, which you should

then press to pull updates.

Branches – To make edits, you will need to make your own branch. It is generally a bad

idea to commit directly to main unless you know what you’re doing. To make a branch,

click on “Current branch” and hit the “new branch” button. Name the branch something

descriptive.

Your current branch should now be the branch that you just created. Hit “Publish Branch”

to establish it for everyone else.

Now make your changes! Then, head back to GitHub Desktop and look at the Changes

panel. Check the box for any files you changed. Git will ignore FEA-related files

(.MFC, .LOG, etc.), but make sure not to include files you didn’t actually work on, even if

they are marked as changed because Solidworks forced you to save over them. See the

troubleshooting section for how to discard these unwanted changes to files without

committing them. Put in a title for your commit and a description if you’d like to be

really detailed, then hit the big blue Commit button.

Now the changes are committed, but the rest of the team still doesn’t know you made

changes. Hit the Push Origin button to push the commits on your branch to the repo.

At this point, the website will reflect the changes you have made to your own branch. No

changes will be made to the main branch of the repo, which protects it from accidents.

You can and should make multiple commits to your own branch between merges to

record small steps in your project.

When you’re ready to integrate your changes into the main repo, you will need to merge

your branch into the main branch. Hit “current branch“ and switch back to main.

For Maintainers – Hit the button at the bottom of the branch menu to merge your

branch into main. Select your branch and hit “Create a merge commit”. Your merge

commit will need to be approved by a team leader with Maintainer permissions.

For Developers – Navigate to your folder on gitlab.com. Hit branches, and then make a

merge request on your branch.

When your pull request is approved, you’ve done it! Celebrate and close your branch or

move on to your next round of edits.

We’re going to do things a little differently than we did in Subversion. The main change

is that due to file storage limits, the mechanical files will be broken into smaller repos. It

will be possible and frequent to build assemblies across different project folders, most

notably the development area pulling models from the active cad area.

• CAD Repos

o Active CAD

o CAD Workshop

o CAD Archive

• Design Docs

o Architecture-LapSim

o Chassis Docs

o Powertrain Docs

o Structures Docs

o Suspension-Vehdyn

• CFD Repos

o cfd-220

o cfd-222

• ecu-controls

• 220e

active-cad – The most current car models and drawings are stored here. Any updates to

this space should have passed a design review, and new part or drawing versions should

update the revision letter in their name.

cad-workshop – For current and past projects. This folder can be a little looser about

following the CAD naming rules. Any development parts that have not passed a design

review and been finalized should be stored here.

cad-archive – A snapshot of the active-cad directory that is representative of the most

recent car built will be saved here. Older versions are on the office hard drives for copy.

cfd –Full car sims are available on the office hard drives only.

design-docs – For storing any Matlab, Excel, or EES files that are worked on alongside a

project. In general, presentations (including design slides) should be stored in Drive.

220e – For the 222 season only, the 220e folder will be kept as it was in svn.

Office Hard Drives – A pair of drives in the office have older files on them for reference

and copying as needed. These files go back as far as 2006 and include vehicle CAD and

team files. Make sure not to change the archival data stored on the drives!

Sometimes things aren’t going to go as planned. Here are some ways to resolve common

errors.

Unwanted Files in Changed Files List – If you edit an assembly, you will be prompted to

save all the dependent files. However, you should only commit the things you’re working

on. After you commit your real changes, right click at the top of the changelist and press

“Discard all changes”. This will revert the remaining files back to their original state.

Newer Commit on Remote – If there have been updates on your branch since you

started working, you may be prompted to fetch from the remote repo. Just hit the Fetch

button and then pull changes from the repo to clear the issue. If there is a conflict, see

the next section.

Resolving Conflicts – As in svn, if someone edits the same file you worked on, only one

version can be used. You will be prompted to choose a version from the dropdown. “from

main” indicates the version on your computer, and “from origin/main” indicates the

version being pulled from the repo. If you don’t want to deal with the conflict, you can

also abort the merge and make a new branch, and then figure out what to do from there.

If GitHub Desktop seems to be hanging during this process, follow the next instructions.

GitHub Desktop Stuck While Resolving Conflicts – If the spinning arrows at the top

right spin and spin, you should perform a reset of the app. Toggle the developer tools by

pressing Ctrl + Shift + I (⌥ + ⌘ + I on Mac). Then, click inside the window that pops up

on the right and press Ctrl + R (⌘ + R on Mac) to refresh. You may need to click back

through the conflict choices but it should resolve itself promptly this time.

Can’t find “[name of repo]” – This means you’ve probably moved the folder or

disconnected the drive where the repo used to be. Use the Locate button to fix the

problem.

Error Message About Lock Files Preventing Actions – If you see this message, you may

need to delete an unexpected lock f ile. Navigate to the hidden .git folder at the top level

of the repo you’re trying to push to or pull from and delete the INDEX.LOCK file. You may

need to enable showing hidden folders to find the .git folder.

