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Sandwich structures are very susceptible to failure due to local stress concentrations induced in areas of load
introduction, supports, geometrical and material discontinuities. These local stress concentrations are caused by
localised bending effects, where the individual face sheets tend to bend about their own middle surface rather than
about the middle surface of the sandwich. This paper deals with such local effects seen around inserts in structural
sandwich plates. A high-order theory for bending of sandwich plates, developed and adapted especially for the
purpose of studying sandwich plates with inserts and other ‘‘hard points’’, is introduced. The theory, which
accounts for the transverse flexibility of the core material, includes separate descriptions of the face sheets and the
core materials as well as general specification of loads and boundary conditions. The theory is formulated in terms
of first-order partial differential equations, which are solved numerically using the ‘‘multi-segment method of
integration’’. Examples involving sandwich plates with ‘‘through-the-thickness’’ inserts subjected to
axisymmetric and non-axisymmetric external loading are presented. The paper is concluded by a discussion of
design aspects.q 1998 Published by Elsevier Science Ltd. All rights reserved

(Keywords: A. plates; B. buckling)

INTRODUCTION

Structural sandwich elements with metal or FRP face sheets
and polymeric foam, Nomex or aluminium honeycomb
cores are used extensively for lightweight spacecraft,
aircraft and marine structures. The introduction of loads
into such structural elements is often accomplished using
inserts, which may be of the ‘‘through-the-thickness’’,
‘‘fully potted’’ or ‘‘partially potted’’ types, as illustrated in
Figure 1.

For all insert types, the ideal load transfer mechanism is
disturbed significantly in the regions close to the inserts. In
the areas of such disturbances the face sheets will bend
locally about their own middle surface rather than about the
middle surface of the sandwich panel. This results in severe
local stress concentrations in the face sheets, in the core
material and in the interfaces between the face sheets and
the core. This again might lead to a premature failure, as
sandwich panels with transversely flexible cores, such as
polymeric foams or honeycombs, are susceptible to failure
due to local stress concentrations. Sandwich panels with
inserts usually fail owing to delamination, to shear rupture
of the core or to direct bending of the face sheets. The local

bending effects causing such structural failures cannot be
accounted for using classical ‘‘antiplane’’ sandwich plate
theories (‘‘weak core’’ assumptions), summed up in the
monographs by Plantema1, Allen2, Stamm and Witte3 and
Zenkert4, as such theories do not include the transverse
flexibility of the core material. A more advanced transverse
bending theory for sandwich plates is presented in the
monograph by Librescu5, in which sandwich plates with
‘‘weak’’ and ‘‘strong’’ cores are also treated separately. The
terms ‘‘weak’’, ‘‘antiplane’’ or ‘‘compliant’’ cores are
equivalent concepts and are used to describe an idealised
core in which the stretching and shearing stiffnesses in
planes parallel with the face sheets are zero but the shear
modulus perpendicular to the face sheets is finite2,4,5. This is
in contrast to a sandwich panel with a strong core (or rigid
core) which is characterized by the fact that the core in-
plane stretching and shearing stiffnesses are taken into
account5. For most structural sandwich panel applications
the weak core assumptions can be adopted, since very
lightweight core materials such as polymeric foams and
honeycombs are usually used.

In the theory developed by Librescu5 the sandwich panels
treated are assumed to be symmetric and the core material is
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modelled as a moderately thick plate, where the presence of
core transverse normal stresses is included in the modelling.
The sandwich plate model presented in Ref. 5 does not,
however, include the transverse flexibility of the core
material, since it is assumeda priori that the transverse
deflection of the core is uniform through the core thickness
(i.e. the core transverse normal strain«z ¼ 0).

The importance of including the transverse flexibility of
the core (i.e. allowing the core thickness to change during
deformation of the sandwich panel) when addressing load
introduction problems, support problems, and problems
involving material and geometric discontinuities in sand-
wich beams was pointed out by Frostig and coworkers6–8.
This was done by formulating a ‘‘high-order’’ sandwich
beam theory, which includes a separate description of each
face sheet and a separate description of the core material.
The core material is modelled as a special type of
transversely isotropic solid where only the out-of-plane
stiffness is accounted for. In other words, the core type
considered in Refs. 6–8 is a transversely isotropic weak core
where the plane of isotropy is parallel to the core middle
plane.

This paper addresses the problem of analysis of sandwich
plates with inserts of the through-the-thickness type
(see Figure 1). The problem is formulated by adapting
and extending the principles behind the sandwich theory
developed for sandwich beams in Refs. 6–8 to sandwich
plates. Full details about the mathematical formulation can
be found in Refs.9,10 for sandwich plates with through-the-
thickness and fully potted inserts.

MATHEMATICAL FORMULATION

Model definition

In the modelling of the insert–sandwich plate system it is
assumed that the interaction between adjacent inserts, as

well as the interaction between an insert and the plate
boundaries or other sources of local disturbances, can be
ignored.Figures 2and 3 define the constituent parts, the
geometry and the possible external load cases. The sharp
interface between the potting and the honeycomb indicated
in Figure 2 represents a strong idealisation, as the ‘‘real’’
potting–honeycomb intersection is not defined precisely in
a geometrical sense.

The following restrictive assumptions are adopted in the
formulation:

• the face sheets are modelled as elastic plates including,
and the effects of transverse shearing deformations may
be accounted for. Furthermore, the face sheets are treated
as homogeneous, isotropic and linear elastic;

• the sandwich plate can be asymmetric, i.e. the face sheets
may have unequal thicknesses (seeFigure 3) and unequal
elastic properties;

• the core material in both the potting and honeycomb
regions is assumed to behave as a special type of
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Figure 1 Insert types typically used for structural sandwich panels

Figure 2 Definition of circular sandwich plate with ‘‘through-the-
thickness’’ insert



transversely isotropic material only possessing stiffness
in the through-the-thickness direction (zc-direction, see
Figure 3), where the plane of isotropy is parallel to the
middle plane of the core;

• the top and bottom face sheets may deflect differently, i.e.
no assumptions about the sandwich plate displacement
field are adopteda priori.

Derivation of core equations

As a direct consequence of the weak core assumptions
adopted, there can be no transfer of in-plane stresses in the
core material, i.e.

jr ¼ jv ¼ trv ; 0 (1)

Considering the conditions for equilibrium in the core
material, the following relations can be established:

trz, z ¼ 0

tvz, z ¼ 0

jc, z þ trz, r þ
1
r

trz þ
1
r

tvz, v ¼ 0

(2)

where differentiation with respect to the spatial coordinates
is denoted by a subscript comma. This convention is
adopted throughout the paper. In eqn (2)jc is the core
transverse normal stress, andt rz andtvz are the core shear
stress components. From the first two equations in eqn (2), it
follows directly that the core shear stress components are
independent of thezc-coordinate. The equations in eqn (2)
are identical with the core equilibrium equations obtained
by Librescu5, because the same weak core assumptions have
been adopteda priori.

Combination of the core equilibrium equations, eqn (2),
with the core kinematic and constitutive relations yields a
set of equations describing the complete core stress and
displacement fields in terms of the transverse core
coordinatezc (measured from the core middle plane) and
in terms of the face sheet displacement components. The
complete derivations are presented in Appendix A, and the
resulting core equations read:

In eqn (3)Ec andGc are the core elastic constants,uc, vc and
wc are the radial, circumferential and transverse displace-
ment components of the core material;ui

0r , ui
0v andwi (i ¼

1, 2) are the radial, circumferential and transverse displace-
ment components of the top and bottom faces;r andv are
the radial and circumferential coordinates.

From eqn (3) it is noticed thatt rz and tvz do not vary
across the core thickness. It is further seen thatjz varies
linearly, thatwc varies quadratically, and finally thatuc and
vc vary cubically over the thickness of the core.

The core material response is coupled with the face sheet
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Figure 3 Geometrical definition of sandwich plate element consisting of
top face sheet (face 1), core material (potting and honeycomb materials)
and bottom face sheet (face 2)



responses by requiring continuity of the displacement field
across the core–face sheet interfaces. This implies that the
following surface tractions and shear stresses are transferred
between the core and the face sheets:

top face–core interface:

jtop
c ¼ jc(r, v, c=2) (4a)

trz ¼ trz(r , v) (4b)

tvz ¼ tvz(r, v) (4c)

bottom face–core interface:

jbottom
c ¼ jc(r, v, ¹ c=2) (4d)

trz ¼ trz(r , v) (4e)

tvz ¼ tvz(r, v) (4f)

Derivation of the complete set of governing equations

The face sheets are modelled as elastic plates, with the
possibility of including transverse shearing effects in
the modelling. Thus, the plate model adopted corresponds
to a Mindlin–Reissner type of plate theory. In cases where
the face sheets are thin, the transverse shearing effects in the
face sheets themselves can be ignored compared with
the transverse shearing of the core material. In the actual
case, the degrees of freedom corresponding to the rotation
of the normals to the face sheet middle surfaces were
locked, and consequently the modelling of the face
sheets was achieved using a Love–Kirchhoff type of plate
theory.

Formulation of the equilibrium, kinematic and constitu-
tive equations for the top and bottom face sheets, and
combination of those with the core equations (eqn (3)) and
continuity requirements (eqns (4)), yields the governing set
of differential equations. It turns out that in this formulation
the order of the set of governing equations is 24, since the
necessary number of boundary conditions to be specified
along an edge is 12. Consequently, the governing equations
can be reduced to 24 first-order partial differential equations
with 24 unknowns. If the 24 unknowns, henceforth called
the fundamental variables, are those quantities that appear in
the natural boundary conditions at an edger ¼ constant,
then the boundary value problem can be stated completely
in terms of these variables. In the present case, the 243 1
matrix of fundamental variables can be written as

{ y(r , v)} ¼ { u1
0r , u1

0v, w1, b1
r , b1

v , N1
r , N1

rv, M1
r , M1

rv,

Q1
r , trz, qr , tvz, qv, u2

0r , u2
0v, w2, b2

r , b2
v , N2

r , N2
rv,

M2
r , M2

rv, Q2
r } ð5Þ

wherebi
r andbi

v are the rotations of the normals to face sheet
midsurfaces,Ni

r and Ni
rv are the face sheet in-plane stress

resultants,Mi
r andMi

rv are the face sheet moment resultants,

andQi
r are the face sheet radial transverse shear stress result-

ants (i ¼ 1, 2). In eqn (5) two new ‘‘core variables’’qr and
qv have been introduced:

qr (r, v) ¼ trz, r , qv(r, v) ¼ trv, r (6)

Adopting the matrix of fundamental variables {y(r, v)}, the
governing equations can be reduced to the form

{ y(r, v)} , r ¼W(r, v, { y} , { y} , v, { y} , vv, …) (7)

where W denotes 24 linear functions in {y(r, v)} and its
derivatives with respect tov. The complete set of governing
equations (including the equations for the top face sheet, the
core and the bottom face sheet) is given in Appendix B. As
is seen from the complete set of governing equations given
in Appendix B, transverse bending and in-plane stretching
effects are coupled in the derived high-order sandwich
plate theory. This is a consequence of the interaction
between the two face sheets through the core material,
through which shearing and transverse normal stresses are
transferred.

The dependency of thev-coordinate is eliminated by
Fourier series expansion of the fundamental variables, thus
reducing the problem to two sets of 24 first-order ordinary
differential equations. In abbreviated form the complete set
of Fourier series expanded set of governing equations can be
specified in the form:
symmetric aboutv ¼ 0:

{ yn(r)} , r ¼ [An(r)]{ yn(r)} þ { Bn(r)} , n¼ 1 → ` (8a)

skew-symmetric aboutv ¼ 0:

{ ỹn(r)} , r ¼ [Ãn(r)]{ ỹn(r)} þ { B̃n(r)} , n¼ 1 → ` (8b)

where {yn(r)}, { ỹn(r)} are 24 3 1 matrices ofr-dependent
coefficient functions of the Fourier series expanded vector
of fundamental variables;[An(r)] and [Ãn(r)] are 243 24
coefficient matrices; {Bn(r)}, { B̃n(r)} are 24 3 1 matrices
of nonhomogeneous load terms.

Specification of boundary conditions

The actual statement of the boundary conditions varies
somewhat from load case to load case (Q, T, M or N, see
Figure 2), but with reference toFigure 2 the imposed
boundary conditions are generally derived from the
following assumptions:

• r ¼ bi: the through-the-thickness insert is considered as an
infinitely rigid body to which the face sheets and the
potting material are rigidly connected;

• r ¼ bp: continuity of the fundamental variables across the
potting–honeycomb interface;

• r ¼ a: it is assumed that the face sheet and honeycomb
core midsurfaces are simply supported.

Generally, the boundary conditions atr ¼ bi andr ¼ a are
stated by specifying linear combinations of the fundamental
variables, i.e.
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symmetric aboutv ¼ 0:

[Tbi
n ]{ yn(r ¼ bi)} ¼ { Ybi

n } (9a)

[Ta
n]{ yn(r ¼ a)} ¼ { Ya

n} (9b)

skew-symmetric aboutv ¼ 0:

[T̃bi
n ]{ ỹn(r ¼ bi)} ¼ { Ỹbi

n } (9c)

[T̃a
n]{ ỹn(r ¼ a)} ¼ { Ỹa

n} (9d)

where [T i
n], [T̃i

n] (i ¼ bi, a) are 24 3 24 non-singular
transformation matrices, and {Yi

n}, { Ỹi
n} ( i ¼ bi, a) are

243 1 matrices containing the fundamental variables at
r ¼ bi and r ¼ a (and thereby also the 12 prescribed
boundary conditions at each location). It should be
emphasized that the form of eqns (9) does not involve any
restrictions on the boundary conditions, and that any
geometric or natural boundary conditions can be stated in
this form.

Numerical solution: multi-segment method of integration

The sets of governing equations (eqns (8)) together with
the statement of the boundary conditions (eqns (9))
constitutes a boundary value problem. No general closed
form solution for this problem is available, and a numerical
solution scheme was therefore developed.

In the present case the boundary value problem was
solved numerically using the ‘‘multi-segment method of
integration’’. This method offers the following features:

• it is easy to implement;
• it can be applied conveniently to systems of first-order

ordinary differential equations;
• it permits arbitrary radial variations, including

discontinuities, of all the dependent variables of the
problem.

Without giving the details, the method is based on a
transformation of the boundary value problem into a series
of interconnected initial value problems. The insert–
sandwich plate configuration is divided into a finite
number of segments, and the solution within each segment
is derived by direct integration (simultaneous integration of
243 24¼ 576 first-order differential equations). Continuity
of the solution vectors({ yn(r)} , { ỹn(r)} ) across the separa-
tion points between the segments, as well as fulfilment of
the boundary conditions atr ¼ bi andr ¼ a, is ensured by
formulating and solving a set of linear algebraic equations.
Further details about the multi-segment method of integra-
tion can be found in Ref. 11. The implementation of the
numerical solution scheme was accomplished using a
UNIX-version of MATLAB t, version 4.1, installed on an
HP9000/700 work station. The direct integration was
carried out using an adaptive step-size fourth- and fifth-
order Runge–Kutta–Fehlberg method. Detailed informa-
tion about the applied numerical solution scheme can be
found in Ref. 9.

IMPLICATIONS AND LIMITATIONS OF THE
DEVELOPED THEORY

The face sheets are treated as homogeneous, isotropic and
linear elastic. Obviously, this is a simplifying assumption as
the face sheets are often made as FRP-laminates. However,
the adopted approximation is quite reasonable in reality,
since strongly orthotropic face-laminates are hardly ever
used around inserts or other areas of load introduction.
Instead, if the surrounding sandwich structure is made with
strongly orthotropic face-laminates, the zones around the
inserts will be reinforced locally such that the resulting
laminates appear as nearly quasi-isotropic with respect to
the in-plane properties. For the cases where slightly
orthotropic face sheets are used, the present formulation
will provide sufficiently accurate results if the engineering
constantsEi and n2

i of the face sheets are replaced by
effective quantities defined by12:

(Ei)eff ¼
������������
ExiEyi

p
(n2

i ) ¼ nxinyi

(i ¼ 1, 2) (10)

where subscriptsx and y denote principal material direc-
tions. For the rare cases where strongly orthotropic face-
laminates are used, the model in its present form is not
applicable. However, it is possible to include orthotropic
face sheet properties in the formulation.

The honeycomb core material is modelled as being a
homogeneous, isotropic and linear elastic material which
supplies a continuous support for the face sheets. This is in
conflict with the physical problem on two points. Firstly, the
hexagonal cell structure of honeycombs results in ortho-
tropic in-plane properties. However, orthotropic core
properties can be included in the formulation. Secondly,
the discrete cellular nature of honeycomb materials has been
excluded from the analysis, as the honeycomb properties are
effectively ‘‘smeared out’’ over the honeycomb cell areas.
Thus, the stresses obtained for the honeycomb material
should be considered as ‘‘averaged’’ over the honeycomb
cell areas. Consequently, the actual load transfer mechan-
isms in the cell walls of the honeycomb core are not
reflected by the ‘‘average’’ core stresses obtained. The core
stresses obtained, however, comply well with the
‘‘smeared’’ or overall stiffness and strength properties
supplied by the manufacturers of honeycombs.

Finally, it should be noted that the sharp separation
between potting and honeycomb assumed in the modelling
represents on idealisation. In reality the potting–honeycomb
intersection is highly irregular, as it is created when the
potting compound flows into those honeycomb cells which
have been left open during machining in preparation of the
insert hole. This problem can only be surmounted by
adopting a model which accounts for the discrete nature of
the cellular honeycomb materials.

Pertaining to a comparison between the suggested high-
order sandwich plate theory relative to classical antiplane
sandwich theories1–4, the following comparative features
should be highlighted:
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• The suggested high-order theory supplies information
about the displacement fields of each face sheet, as well
as of each point in the core material. The core displacements
are predicted to vary non-linearly through core thickness.

• As opposed to this, classical antiplane theories assume the
core thickness to be constant. Consequently, the in-plane
core displacements are predicted to vary linearly over the
core thickness.

• Both types of theory assume that the core shear stresses
are constant through the core thickness (consequences of
neglecting the in-plane stretching and shearing core stiff-
nesses), and there is very little difference between the
predicted values. However, the high-order sandwich
plate theory accounts for the existence of transverse
normal stresses in the core material. The transverse
normal core stresses will in many cases play an important
role in the onset and development of failure.

EXAMPLES

In the following some numerical results for the case of
sandwich plates with through-the-thickness inserts are
presented. Two important load cases are discussed:

(1) out-of-plane loadQ (axisymmetric), seeFigure 2;
(2) bending moment loadingM (non-axisymmetric), see

Figure 2. The discussion of the two load cases will be
based on the same geometry and material data:

Geometry: bi ¼ 10 mm,bp ¼ 30 mm,a ¼ 150 mm,c ¼
10 mm,f1 ¼ f2 ¼ 1 mm.

Top face: quasi-isotropic FRP-laminate with properties
Ef1 ¼ 40 GPa,n f1 ¼ 0.3.

Bottom face: as top face, i.e.Ef2 ¼ Ef1, n f2 ¼ n f1.

Potting compound: bulk epoxy,Ep ¼ 2.5 GPa,Gp ¼ 0.93 GPa.

Honeycomb core: Hexcel honeycomb 3/160–5056–0.00070, Eh ¼
310 MPa,Gh < (GW þ GL)/2 ¼ 138 MPa.

Out-of-plane loading (Q load case)

The case of external out-of-plane loadingQ is probably
the most important of all the load cases, and design
guidelines for this load case can be found in Ref. 12 for
instance. However, no elaborate description of the deforma-
tion patterns and stress distributions are given in Ref. 12,
and the guidelines specified do not supply detailed insight
into the mechanics of the sandwich plate–insert problem.

In the example presented it is assumed thatQ¼ ¹ 1.0 kN
(i.e. ‘‘comprehensive’’ out-of-plane loading).

Figure 4shows, the lateral deflections of the face sheets
(w1, w2), and the core midsurface (wc(zc ¼ 0)).

In Figure 4(and the figures to come) it is noticed thatr #
bp ¼ 30 mm corresponds to the potting region, whereasr .
30 mm corresponds to the honeycomb region. From the
results displayed, it is seen that the lateral deflections of
the two face sheets and the core material midsurface are
almost identical. As expected, owing to the symmetry of the
sandwich plate considered, the lateral displacements of
the two face sheetsw1 andw2 are identical. The midsurface
lateral displacement of the core materialwc (potting and
honeycomb), however, is slightly different fromw1 andw2

close to the insert–potting and potting/honeycomb inter-
faces (difficult to see from the figure) where the core
properties change abruptly. The differences between the
lateral face sheet displacements and core displacements,
encountered at these locations, causes the inducement of
transverse normal stresses (jc) in the potting and the
honeycomb core.

Figure 5shows the stress distribution in the core material.
The values of the transverse normal stressjc are given at the
interface between the top face sheet and the core (jtop

c ), as
well as at the interface between the bottom face sheet and
the core (jbottom

c ). According to the high-order sandwich
plate theoryjc varies linearly over the core thickness, see
eqn (3). Figure 5 also shows the distribution of the
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Figure 4 Lateral displacementsw1, w2, wc(zc ¼ 0). Q ¼ ¹ 1.0 kN

Figure 5 Core stress componentst rz, jtop
c , jbottom

c . Q ¼ 1.0 kN



transverse core shear stress componentt rz, which is
assumed to be constant over the height of the core material,
see eqn (3).

Considering thejc-distribution, it is observed that the
presence of transverse normal stresses is a very local
phenomenon, as significantjc-contributions are only
present close tor ¼ bi ¼ 10 mm (i.e. close to the insert)
and close tor ¼ bp ¼ 30 mm (i.e. close to the potting–
honeycomb intersection). It is seen thatjtop

c andjbottom
c are

of opposite signs, i.e. when one is compressive the other is
tensile and vice versa.

Considering the shear stress distribution in the core
material, the overall tendency is thatt rz decreases with
increasingr-values. The overall tendency of decreasingt rz-
values with increasingr is a consequence of the fact that the
total transverse shear stress resultantQtotal

r ¼ Q1
r þ Q2

r þ ctrz

is inversely proportional tor (vertical equilibrium requires
Q¼ 2prQtotal

r ), and that the main part ofQ is carried by the
core material (i.e. byt rz). It is further seen fromFigure 5
that the abrupt change of core stiffness at the potting–
honeycomb intersection only causes minor fluctuations of
the t rz-distribution.

Considering the combined influence of the transverse
normal and the shear stress components on the potting and
honeycomb materials, it should be noticed that the
mechanical properties of the two materials are very
different12. Thus, the stiffness and strength properties of
the honeycomb material are usually an order of magnitude
lower than those of the potting.

Recalling fromFigure 5, that the magnitudes of the peak
stresses in the potting and honeycomb regions are about the
same, it is then seen that a ‘‘weak spot’’ is located at the
position of the potting–honeycomb intersection (atr ¼ bp)
as well as a short distance into the honeycomb material.

From this, it is concluded that the stress concentrations in
the potting region (closest to the insert) are not likely
to cause a failure, except for the possibility of failure due to

weak bonds between the insert and the potting as well as
between the face sheets and the potting.

However, the stress concentrations encountered at the
potting honeycomb intersection, and immediately after that,
might cause a premature failure. The active failure
mechanisms could be one of three.

Top-surface of honeycomb:

the tensilejtop
c stresses might cause a failure in the (weak)

bond between the top face sheet and the honeycomb.

Potting–honeycomb intersection:

the t rz stresses might cause a shear rupture of the core
surrounding the potting material.

Bottom-surface of honeycomb:

the compressivejbottom
c stresses might cause a compression

failure (buckling) of the honeycomb cells.
In practice, core shear rupture of the undoubled core foils

is the cause of structural failure in most cases, i.e. shear
failure occurs at the potting–honeycomb intersection12.

Figure 6 shows the distribution of the radial bending
moment resultantsM1

r andM2
r . It is observed thatM1

r and
M2

r are identical (owing to the symmetry of the sandwich
plate considered) and that they attain their peak values at the
insert–potting intersection (r ¼ bi ¼ 10 mm). The location
of the peak bending moment resultants at this location is due
to the restrictive boundary conditions imposed by the insert.

Another local peak is seen around the potting–honey-
comb intersection atr ¼ bp but the decay ofM1

r andM2
r is

seen to be complete a short distance away fromr ¼ bp.
The results presented demonstrate that complicated load

transfer mechanisms are active in sandwich plates with inserts.
This is especially pronounced in the regions close to the insert,
and close to the potting–honeycomb interface, i.e. in regions
where significant changes of geometry and stiffness properties
take place. Away from the locations of discontinuous change
of geometry or material properties, the core material carries the
load in pure shear and no local stress concentrations are
present. In these regions, classical antiplane sandwich plate
theory1–4is capable of describing the stress state accurately.

Bending moment loading (M load case)

To further demonstrate the capabilities of the developed
high-order sandwich plate theory, an example of a circular
sandwich plate with a through-the-thickness insert subjected
to an external bending momentM (non-axisymmetric load
case; seeFigure 2) is presented. The bending moment load
case is highly realistic, even though it is generally
recommended to avoid this load type through proper
design (using groups of inserts instead of just one insert).
The geometry and material data are assumed to be the same as
for theQ load case. The external bending moment is assumed
to beM ¼ 25 N m, and is imposed by rotating the though-the-
thickness insert as a rigid body about the core midsurface.
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Figure 6 Radial bending moment resultantsM1
r , M2

r . Q ¼ 1.0 kN



Figure 7showsw1, w2 andwc(midsurface)¼ wc(zc ¼ 0)
along v ¼ 0 (varies as cos(v), seeFigure 2). The lateral
deflectionsw1 andw2 of the two face sheets, as well as the
lateral deflection of the core midsurfacewc(zc ¼ 0), are
slightly different from each other except atr ¼ bi ¼ 10 mm
and r ¼ a ¼ 150 mm owing to the imposed boundary
conditions.

A characteristic feature of the results shown inFigure 7is
the abrupt change of sign of the deflection ‘‘slope’’, which
is seen aroundr ¼ bp ¼ 30 mm, i.e. at the potting–
honeycomb intersection.

Figure 8shows a surface plot of the deflectional response
of the top face sheet of the insert–sandwich plate system.
The deformed face sheet is symmetric aboutv ¼ 0 (v ¼ 0 is
coincident with thex-axis inFigure 8) and, therefore, only
one half of the deformed face sheet is shown. The central

part of the deformed top face sheet, extending from (x, y) ¼

(0, 0) to r ¼ (x2 þ y2) ¼ bi ¼ 10 mm in all directions
corresponds to the rigid through-the-thickness insert.

Figure 9 shows the distribution of stresses in the core
material (potting and honeycomb), and the close resem-
blance with the core stress distribution for theQ load case
(displayed in Figure 5) should be noted. Four stress
components are shown;jtop

c , jbottom
c and t rz, which are

given alongv ¼ 0 (they vary as cos(v)), andtvz, which is
given along v ¼ p/2 (varies as sin(v)). It is seen that
significant peaks of the transverse normal stressesjtop

c and
jbottom

c are present close to the insert (r ¼ bi) and around the
potting–honeycomb intersection (r ¼ bp).

It should be noted that the absolute values ofjtop
c and

jbottom
c are not the same. The reason for this ‘‘asymmetric’’

behaviour (not even ‘‘skew symmetric’’ about the core
midsurface) is that the stress states in the two face sheets are
not identical, thus causing an asymmetric core stress
distribution to appear.

The presence oftvz is a consequence of the non-
axisymmetric nature of theM load case. It is observed
thattvz builds up and attains its peak value approximately in
the middle of the potting (atr < 20 mm). It should be noted
thatjtop

c , jbottom
c andt rz attain their peaks alongv ¼ 0 andv

¼ p, whereastvz attains its peak values forv ¼ p/2 andv ¼

3p/2. It is therefore concluded that the peaks ofjtop
c , jbottom

c

andt rz never occur at the same locations as the peaks oftvz.
Pertaining to the combined influence of the transverse
normal and shear stress components on the potting and
honeycomb materials, reference is made to the comments
given for theQ load case.

Figure 10 shows the radial bending moment resultants
M1

r andM2
r alongv ¼ 0 (M1

r andM2
r vary as cos(v)). It is

seen that the magnitudes of the bending moment resultants
in the two face sheets are dissimilar. Around the potting–
honeycomb intersection atr ¼ bp ¼ 30 mm a characteristic
‘‘disturbance’’ of theMi

r distributions is seen.
For examples involving sandwich plates with through-

the-thickness inserts subjected to other types of external
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Figure 7 Lateral displacementsw1ðv ¼ 0Þ, w2(v ¼ 0), wc(zc ¼ 0, v ¼ 0).
M ¼ 25 N m

Figure 8 Surface plot of the deformed top face sheet (one half shown).M ¼ 25 N m



loading (seeFigure 2) and sandwich plates with fully potted
inserts (seeFigure 1) see Refs. 9,10.

DISCUSSION OF DESIGN ASPECTS

ComparingFigures 5and6 for the out-of-plane load case,
andFigures 9and10 for the bending moment load case, it
should be recognised that the potting compound plays an
important structural role in the overall load transfer around
the insert.

Obviously, the ‘‘primary’’ function of the potting material
is to provide the connection between the insert and the

honeycomb material, or, in other words, to ensure that a
proper shear load transfer can be accomplished between the
insert and the honeycomb material. This connecting function
is obtained when the potting compound is injected and flows
into those honeycomb cells that have been left open during
machining (in preparation of the hole for the insert).

The other, or ‘‘secondary’’, function of the potting
material is associated with its participation in the overall
load transfer, and is less obviously recognised than the
simple connecting function mentioned above. Thus, the
potting compound plays a significant role in the load
transfer in insert–sandwich plate systems, especially those
subjected to ‘‘transverse’’ load types (i.e.Q and M load
cases, seeFigure 2). The presence of a potting compound,
which is usually 5–10 times stiffer than the honeycomb core
material, causes a considerable relief of the peak bending
and shear stresses in the face sheets (located adjacent to the
insert). This stress relieving function is achieved because
the relatively stiff potting compound acts as an ‘‘attractor’’
on the transverse shear stresses in the sandwich plate.

Based on the results presented herein, as well as the
results of extensive parametric studies presented in Refs.
9,10, a set of guidelines for the design of sandwich plates
with through-the-thickness inserts has been formulated.

• If possible, the radial extension of the potting compound
(bp ¹ bi, seeFigure 2) should be about 0.5bi. This will
ensure utilisation of the full shear stress transfer capabil-
ity of the potting, while ensuring maximum relief of the
face sheet bending and shear stress concentrations at the
same time.

• If possible, the ratio of the potting stiffness to the honey-
comb stiffnessEp/Eh should be chosen so thatEp/Eh <
3–4. This will ensure a good compromise between the
peak stress level in the face sheets and in the potting and
honeycomb materials.

• The external bending moment load case should generally
be avoided. This can be achieved by application of the
external loads through groups of inserts, thus converting
the bending loads to out-of-plane loads on the inserts.

• As severe stress concentrations in the potting and the
adhesive bond lines cannot be avoided, the materials
chosen for the potting and adhesive bonds should possess
long elongation to failure capability.

The listed design guidelines, which have been derived by
use of the high-order sandwich plate theory presented herein,
generally agree well with the recommendations specified in for
instance the ESAInsert Design Handbook12.

CONCLUSIONS

A high-order sandwich plate theory has been developed and
adapted for the analysis of sandwich plates with inserts. The
formulation presented herein was developed for sandwich
plates with potted through-the-thickness inserts, but it can
be extended and adapted for the analysis of sandwich plates
with inserts of the fully potted and partially potted types.
Mathematically, the insert–sandwich plate problems appear
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Figure 10 Radial bending moment resultantsM1
r (v ¼ 0), M2

r (v ¼ 0). M ¼
25 N m

Figure 9 Core stress componentsjtop
c (v ¼ 0), jbottom

c (v ¼ 0), t rz(v ¼ 0),
tvz(v ¼ p/2). M ¼ 25 N m



as sets of first-order partial differential equations, which can
be solved numerically in a convenient and cost effective
manner using the multi-segment method of integration.

Modules for the analysis of sandwich plates with through-
the-thickness, fully potted and partially potted inserts (under
general load conditions), based on the presented high-order
sandwich plate theory, are currently being included in the
software package ESACompt. ESACompt is a software
package for the analysis and design of composite laminates
and structural elements, which is under development for the
European Space Agency13.
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APPENDIX

A. DERIVATION OF CORE DISPLACEMENT AND
STRESS DISTRIBUTIONS

A1. Basic assumptions

The core material is assumed to be a special type of trans-
versely isotropic solid only possessing stiffness in the
through-the-thickness direction, and with the plane of
isotropy parallel with the core middle plane (i.e. the in-plane
stretching and shearing stiffnesses are assumed to be negligi-
ble). Thus, the core material is modelled as a weak or compliant
core, as discussed by Librescu5. Consequently, the in-plane
stress components are nil (seeFigure 3 for coordinates):

jr ¼ jv ¼ trv ; 0 (A.1)

Adopting eqn (A.1), the core equilibrium conditions read

trz, z ¼ 0 (A.2)

tvz,z ¼ 0 (A.3)

jc,z þ trz, r þ
1
r

trz þ
1
r

tvz, v ¼ 0 (A.4)

From eqns (A.2) and (A.3) it follows that

trz(r, v, zc) ¼ trz(r, v) (A.5)

tvz(r, v, zc) ¼ tvz(r, v) (A.6)

i.e. the shear stressest rz andtvz are predicted to be constant
through the thickness of the core.

It is further assumed that the core material behaves in a
linear elastic manner, and that only small displacements
(negligible rotations) are considered. Given these additional

restrictive assumptions, the core constitutive equations
and the core kinematic relations can be expressed as
(wherejc ¼ jz in the core):

jc ¼ Ec«z (A.7)

trz ¼ Grzgrz (A.8)

tvz ¼ Gvzgvz (A.9)

«z ¼ wc, z (A.10)

trz ¼ wc, r þ uc, r (A.11)

tvz ¼ vc, z þ
1
r

wc, v (A.12)

Combination of eqns (A.7), (A.8), (A.9), (A.10), (A11) and
(A.12) yields

jc ¼ Ecwc,z (A.13)

trz ¼ Grz{ wc, r þ uc,z} (A.14)

tvz ¼ Gvz vc, z þ
1
r

wc, v

� �
(A.15)

In eqns (A.10), (A.11), (A.12), (A.13), (A.14) and (A.15)wc

represents the transverse displacement of the core material,
anduc andvc represent the radial and circumferential core dis-
placement components respectively.Ec is the transverse elas-
tic core modulus of the core (zc direction), andGrz, Gvz are
the transverse core shear moduli (in cylindrical coordinates).

The core material (seeFigure 2) is assumed to be of
honeycomb type, which is most conveniently described as an
orthotropic material in Cartesian coordinates (characterised by
its ‘‘W’’- and ‘‘L’’-direction properties: GW, GL), and it is not
convenient to describe the material in terms of two shear
moduli in cylindrical coordinates (Grz, Gvz). Instead, in the
honeycomb region, the core material is suggested as being
approximated as a transversely isotropic material as follows:

Grz < Gvz ¼ Gc ¼ Gh ¼
GW þ GL

2
(A.16)

In the potting-region of the sandwich core, the adoption of
only oneG-modulus (Gc ¼ Gp) requires no additional com-
ments, as the potting material is isotropic.

A2. zc-dependence of displacement and stress fields

By integration of eqn (A.13) with respect to the core thick-
ness coordinate between limitszc ¼ c/2 (c is the core thick-
ness, seeFigures 2and3) andzc (using integration by parts
and using eqn (A.9)), and by requiring continuity of the
transverse displacements across the interfaces between the
core and the face sheets*, the following is obtained:

wc, z ¼
jc

Ec
⇔

∫zc

c=2
dwc ¼

∫zc

c=2

jc

Ec
dz⇔ wc(r, v, zc)

¼ w1 þ
1
Ec

zcjc(r, v, zc) ¹
c
2

jc(r, v, c=2)
n o

þ
1
Ec

trz, r þ
1
r

trz þ
1
r

tvz, v

� �
z2
c

2
¹

c2

8

� �
ðA:17Þ
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* The following conditions are required to be fulfilled:

wc(r, v, c=2) ¼ w1(r , v); wc(r, v, ¹ c=2) ¼ w2(r , v)



wherew1 ¼ w1(r, v) is the transverse displacement of the top
face (face 1).

Insertingzc ¼¹ c=2 (corresponding to the bottom surface
of the core) in eqn (A.17), and requiring continuity of the
transverse displacements of the bottom face sheet and the
core, yields

wc(r, v, ¹ c=2) ¼ w1

þ
1
Ec

¹
c
2

jc(r, v, ¹ c=2) ¹
c
2

jc(r , v, c=2)
n o

⇔ jc(r, v, ¹ c=2) þ jc(r, v, c=2) ¼
2Ec

c
{ w1 ¹ w2} ðA:18Þ

wherew2 ¼ w2(r, v) is the transverse displacement of the
bottom face (face 2).

Integration of eqn (A.4) and utilising eqns (A.5) and (A.6)
yields

jc, z ¼ ¹ trz, r þ
1
r

trz þ
1
r

tvz, v

� �
⇔

∫zc

c=2
djc ¼ ¹ trz, r þ

1
r

trz þ
1
r

tv,z, v

� � ∫zc

c=2
dz

⇔ jc(r, v, zc) ¹ jc(r , v, c=2)

¼ ¹ trz, r þ
1
r

trz þ
1
r

tvz, v

� �
zc ¹

c
2

n o
ðA:19Þ

Settingzc ¼ ¹ c=2 in eqn (A.19):

jc(r, v, ¹ c=2) ¹ jc(r, v, c=2) ¼ trz, r þ
1
r

trz þ
1
r

tvz, v

� �
c

(A.20)

By addition of eqn (A.20) and eqn (A.18) the following is
obtained:

jc(r, v, ¹c=2)¼
Ec

c
{ w1 ¹ w2} þ trz, r þ

1
r

trz þ
1
r
tvz, v

� �
c
2

(A.21)

whereas subtraction of eqn (A.20) from eqn (A.18) yields

jc(r , v, c=2) ¼
Ec

c
{ w1 ¹ w2} ¹ trz, r þ

1
r

trz þ
1
r

tvz, v

� �
c
2

(A.22)

Inserting eqn (A.22) into eqn (A.19) gives the desired
expression forjc(r, v, zc):

jc(r , v, zc) ¼
Ec

c
{ w1 ¹ w2} ¹ trz, r þ

1
r

trz þ
1
r

tvz, v

� �
zc

(A.23)

Inserting eqns (A.22) and (A.23) in the derived expression
for wc(r, v, zc) (given by eqn (A.17)) yields

wc(r, v, zc) ¼ w1 þ
{ w1 ¹ w2}

c
zc ¹

c
2

n o
¹

1
2Ec

trz, r þ
1
r
trz þ

1
r
tvz, v

� �
z2
c ¹

c2

4

� �
ðA:24Þ

from which it is observed thatwc varies as a quadratic
function through the core.

Thezc dependency of the radial core displacement com-
ponentuc can be derived by integrating eqn (A.14) with
respect to the transverse coordinate (between limits
zc ¼ c=2 andzc). In the computations, eqn (A.24) has been
utilised, fulfilment of continuity of the radial displacements
across the core–face sheet interfaces† has been required,
and the face sheet kinematic relations‡ have been used:

uc,z ¼
trz

Gc
¹ wc, r⇔

uc,z ¼
trz

Gc
¹ w1

, r ¹
{ w1

, r ¹ w2
, r }

c
zc ¹

c
2

n o
þ

1
2Ec

trz, rr þ
1
r

trz, r ¹
1
r2 trz þ

1
r

tvz, vr ¹
1
r2 trz, v

� �
3 z2

c ¹
c2

4

� �
⇔

uc(r , v, zc) ¼ u1
0r ¹

b1
r

2
f1 ¹

z2
c

c
¹ zc þ

3c
4

� �
¹

b2
r

2

3
z2
c

c
¹ zc þ

c
4

� �
þ

trz

Gc
zc ¹

c
2

n o
þ

1
2Ec

trz, rr þ
1
r

trz, r ¹
1
r2 trz þ

1
r

tvz, vr ¹
1
r2 tvz, v

� �
3

z3
c

c
¹

c2zc

4
þ

c3

12

� �
ðA:25Þ

eqn (A.25) shows thatuc varies as a cubic function through
the core.

Similar to the derivations shown foruc, the
zc ¹ dependency of the circumferential core displacement
vc can be found. By integrating eqn (A.15) with respect tozc,
utilising eqn (A.24) again, requiring continuity of the
circumferential displacements across the core–face sheet
interfaces§, as well as using the face sheet kinematic
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† By requiring fulfilment of

uc(r, v, c=2) ¼ u1
r (r, v, ¹ f1=2);

uc(r, v, ¹ c=2) ¼ u2
r (r, v, f2=2)

‡ Adopting the classic Kirchhoff assumptions, the face sheet kinematic
relations read

w1
, r ¼ ¹b1

r ; w2
, r ¼ ¹b2

r

u1
r (r, v, ¹ f1=2) ¼ u1

0r ¹
f1
2

b1
r

§ By requiring fulfilment of

vc(r, v, c=2) ¼ u1
v(r , v, ¹ f1=2);

vc(r , v, ¹ c=2) ¼ u2
v(r , v, f2=2)

kAdopting the classic Kirchhoff assumptions, the face sheet kinematic
relations read

1
r

w1
, v ¼ ¹b1

v ;
1
r

w2
, v ¼ ¹ b2

v

u1
v(r, v, ¹ f1=2) ¼ u1

0v ¹
f1
2

b1
v



relationsk, the following is obtained:

vc,z ¼
tvz

Gc
¹

1
r

wc, v⇔

vc,z ¼
tvz

Gc
¹

1
r

w1
, v ¹

{ w1
, v ¹ w2

, v}
rc

zc ¹
c
2

n o
þ

1
2rEc

trz, rvþ
1
r

trz, v þ
1
r

tvz, vv

� �
z2
c¹

c2

4

� �
⇔

vc(r, v, zc) ¼ u1
0v ¹

b1
, v

2
f1 ¹

z2
c

c
¹ zc þ

3c
4

� �
¹

b2
, v

2
z2
c

c
¹ zc þ

c
4

� �
þ

tvz

Gc
zc ¹

c
2

n o
þ

1
2rEc

trz, rv þ
1
r

trz, v þ
1
r

tvz, vv

� �
3

z3
c

c
¹

c2zc

4
þ

c3

12

� �
ðA:26Þ

As was the case foruc, it is observed thatvc varies as a cubic
function through the core.

B. COMPLETE SET OF GOVERNING EQUATIONS

B1. Governing equations for the top face sheet

u1
0r, r ¼ ¹

n1

r
u1

0r ¹
n1

r
u1

0v, v þ
N1

r

A1
(B.1)

u1
0v, r ¼ ¹

1
r

u1
0r, v þ

1
r

u1
0v þ

N1
rv

A1(1¹ n1)
(B.2)

w1
, r ¼ ¹ b1

r (B.3)

b1
r , r ¼ ¹

n1

r
b1

r ¹
n1

r
b1

v, v þ
M1

r

D1
(B.4)

b1
v, r ¼

M1
rv

D1(1¹ n1)
(B.5)

N1
r, r ¼

A1(1¹ n2
1)

r2 u1
0r þ

A1(1¹ n2
1)

r2 u1
0v, v ¹

(1¹ n1)
r

N1
r

¹
1
r

N1
rv, v þ tzr ðB:6Þ

N1
rv, r ¼ ¹

A1(1¹ n2
1)

r2 u1
0r, v ¹

A1(1¹ n2
1)

r2 u1
0v, vv ¹

n1

r
N1

r, v

¹
2
r

N1
rv þ tzv ðB:7Þ

M1
r, r ¼

D1(1¹ n2
1)

r2 b1
r þ

D1(1¹ n2
1)

r2 b1
v, v ¹

(1¹ n1)
r

M1
r

¹
1
r

M1
rv, v þ Q1

r ¹
f1
2

tzr ðB:8Þ

M1
rv, r ¼ ¹

D1(1¹ n1)n1

r2 b1
r, v ¹

D1(1¹ n1)n1

r2 b1
v, vv

þ
(1¹ n1)

r
M1

r, v ¹
2
r

M1
rv ¹

f1
2

tzv ðB:9Þ

Q1
r , r ¼

Ec

c
w1 ¹

D1(1¹ n1)
r3 b1

r, vv ¹
D1(1¹ n1)

r3 b1
v, vvv

¹
1
r2 M1

r, vv ¹
1
r

Q1
r ¹

c
2r

trz ¹
c
2

qr ¹
c
2r

tvz, v ¹
Ec

c
w2

ðB:10Þ

B2. Governing equations for the core

trz, r ¼ qr (B.11)

qr, r ¼ ¹
12Ec

c3 u1
0r þ

6Ec(f1 þ c)
c3 b1

r þ
1
r2 þ

12Ec

c2Gc

� �
trz

¹
1
r

qr þ
1
r2 tvz, v ¹

1
r

qv, v þ
12Ec

c3 u2
0r þ

6Ec(f2 þ c)
c3 b2

r

ðB:12Þ

tvz, r ¼ qv (B.13)

qv, r ¼ ¹
Gc(3¹ n1)

cr2 u1
0r, v þ

2Gc

cr2 u1
0v ¹

Gc(1¹ n1)
cr2 u1

0v, vv

¹
Gc(2¹ n1)

crA1(1¹ n1)
N1

r, v þ
Gc

crA1(1¹ n1)
N1

rv þ
1
r

qr, v

þ
Gc

c
1

A1(1¹ n1)
þ

1
A2(1¹ n2)

� �
tvz ¹

1
r

qv

þ
Gc(3¹ n2)

cr2 u0r, v ¹
2Gc

cr2 u2
0v þ

Gc(1¹ n2)
cr2 u2

0v, vv

þ
Gc(2¹ n2)

crA2(1¹ n2)
N2

r, v ¹
Gc

crA2(1¹ n2)
N2

rv ðB:14Þ

B3. Governing equations for the bottom face sheet

u2
0r, r ¼ ¹

n2

r
u2

0r ¹
n2

r
u2

0v, v þ
N2

r

A2
(B.15)

u2
0v, r ¼ ¹

1
r

u2
0r, v þ

1
r

u2
0v þ

N2
rv

A2(1¹ n2)
(B.16)

w2
, r ¼ ¹ b2

r (B.17)

b2
r, r ¼ ¹

n2

r
b2

r ¹
n2

r
b2

v, v þ
M2

r

D2
(B.18)

b2
v, r ¼

M2
rv

D2(1¹ n2)
(B.19)

N2
r, r ¼ ¹ tzr þ

A2(1¹ n2
2)

r2 u2
0r þ

A2(1¹ n2
2)

r2 u2
0v, v

¹
(1¹ n2)

r
N2

r ¹
1
r

N2
rv, v ðB:20Þ

N2
rv, r ¼ ¹ tzv ¹

A2(1¹ n2
2)

r2 u2
0r, v ¹

A2(1¹ n2
2)

r2 u2
0v, vv

¹
n2

r
N2

r, v ¹
2
r

N2
rv ðB:21Þ
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M2
r, r ¼ ¹

f2
2

tzr þ
D2(1¹ n2

2)
r2 b2

r þ
D2(1¹ n2

2)
r2 b2

v, v

¹
(1¹ n2)

r
M2

r ¹
1
r

M2
rv, v þ Q2

r ðB:22Þ

M2
rv, r ¼ ¹

f2
2

tzv ¹
D2(1¹ n2)n2

r2 b2
r , v ¹

D2(1¹ n2)n2

r2 b2
v, vv

þ
(1¹ n2)

r
M2

r, v ¹
2
r

M2
rv ðB:23Þ

Q2
r, r ¼ ¹

Ec

c
w1 ¹

c
2r

trz ¹
c
2

qr ¹
c
2r

tvz, v þ
Ec

c
w2

¹
D2(1¹ n2)

r3 b2
r, vv ¹

D2(1¹ n2)
r3 b2

v, vvv ¹
1
r2 M2

r, vv

¹
1
r

Q2
r ðB:24Þ

In eqns (B.1)–(B.24),n i (i ¼ 1, 2) is the Poisson’s ratio of the
face sheets, andAi andDi (i ¼ 1, 2) are the extensional and
bending stiffnesses of the face sheets.
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