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Sandwich structures are very susceptible to failure due to local stress concentrations induced in areas of load
introduction, supports, geometrical and material discontinuities. These local stress concentrations are caused by
localised bending effects, where the individual face sheets tend to bend about their own middle surface rather than
about the middle surface of the sandwich. This paper deals with such local effects seen around inserts in structural
sandwich plates. A high-order theory for bending of sandwich plates, developed and adapted especially for the
purpose of studying sandwich plates with inserts and other “hard points”, is introduced. The theory, which
accounts for the transverse flexibility of the core material, includes separate descriptions of the face sheets and the
core materials as well as general specification of loads and boundary conditions. The theory is formulated in terms
of first-order partial differential equations, which are solved numerically using the “multi-segment method of
integration”. Examples involving sandwich plates with “through-the-thickness” inserts subjected to
axisymmetric and non-axisymmetric external loading are presented. The paper is concluded by a discussion of
design aspect® 1998 Published by Elsevier Science Ltd. All rights reserved

(Keywords: A. plates; B. buckling)

INTRODUCTION bending effects causing such structural failures cannot be
accounted for using classical “antiplane” sandwich plate

Structural sandwich elements with metal or FRP face sheetstheories (“weak core” assumptions), summed up in the
and polymeric foam, Nomex or aluminium honeycomb monographs by PlanterhaAllen?, Stamm and Witt& and
cores are used extensively for lightweight spacecraft, Zenkerf, as such theories do not include the transverse
aircraft and marine structures. The introduction of loads flexibility of the core material. A more advanced transverse
into such structural elements is often accomplished using bending theory for sandwich plates is presented in the
inserts, which may be of the “through-the-thickness”, monograph by Librescy in which sandwich plates with
“fully potted” or “partially potted” types, as illustrated in “weak” and “strong” cores are also treated separately. The
Figure 1 terms “weak”, “antiplane” or “compliant” cores are

For all insert types, the ideal load transfer mechanism is equivalent concepts and are used to describe an idealised
disturbed significantly in the regions close to the inserts. In core in which the stretching and shearing stiffnesses in
the areas of such disturbances the face sheets will bendblanes parallel with the face sheets are zero but the shear
locally about their own middle surface rather than about the modulus perpendicular to the face sheets is firfite This is
middle surface of the sandwich panel. This results in severein contrast to a sandwich panel with a strong core (or rigid
local stress concentrations in the face sheets, in the corecore) which is characterized by the fact that the core in-
material and in the interfaces between the face sheets anglane stretching and shearing stiffnesses are taken into
the core. This again might lead to a premature failure, as account®. For most structural sandwich panel applications
sandwich panels with transversely flexible cores, such asthe weak core assumptions can be adopted, since very
polymeric foams or honeycombs, are susceptible to failure lightweight core materials such as polymeric foams and
due to local stress concentrations. Sandwich panels withhoneycombs are usually used.
inserts usually fail owing to delamination, to shear rupture  In the theory developed by Librestthe sandwich panels
of the core or to direct bending of the face sheets. The local treated are assumed to be symmetric and the core material is
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Honeycomb core

“Partially potted”
insert

“Fully potted”
insert
Potting compound

“Through-the-thickness*

Bottom face insert

Figure 1 Insert types typically used for structural sandwich panels

modelled as a moderately thick plate, where the presence of )
core transverse normal stresses is included in the modelling.
The sandwich plate model presented in Ref. 5 does not,
however, include the transverse flexibility of the core
material, since it is assumaeal priori that the transverse
deflection of the core is uniform through the core thickness
(i.e. the core transverse normal strain= 0).

The importance of including the transverse flexibility of
the core (i.e. allowing the core thickness to change during
deformation of the sandwich panel) when addressing load
introduction problems, support problems, and problems
involving material and geometric discontinuities in sand-
wich beams was pointed out by Frostig and coworkéts
This was done by formulating a “high-order” sandwich
beam theory, which includes a separate description of each
face sheet and a separate description of the core materi""IFigure 2 Definition of circular sandwich plate with “through-the-
The core material is modelled as a special type of thickness” insert
transversely isotropic solid where only the out-of-plane

stiffness is accounted for. In other words, the core type \ye| as the interaction between an insert and the plate
considered in Refs. 6-8is a transversely isotropic weak corey ndaries or other sources of local disturbances, can be
where the plane of isotropy is parallel to the core middle gnored. Figures 2and 3 define the constituent parts, the
plane. _ ~ geometry and the possible external load cases. The sharp
This paper addresses the problem of analysis of sandwichjnerface between the potting and the honeycomb indicated
plates with inserts of the through-the-thickness type i Figure 2 represents a strong idealisation, as the “real”
(see Figure 1). The problem is formulated by adapting hotting—honeycomb intersection is not defined precisely in
and extending the principles behind the sandwich theory 5 geometrical sense.
developed for sandwich beams in Refs. 6-8 to sandwich  Tpe following restrictive assumptions are adopted in the
plates. Full details about the mathematical formulation can fomulation:

be found in Refs?*for sandwich plates with through-the-
thickness and fully potted inserts. « the face sheets are modelled as elastic plates including,

and the effects of transverse shearing deformations may
be accounted for. Furthermore, the face sheets are treated

MATHEMATICAL FORMULATION as homogeneous, isotropic and linear elastic;

« the sandwich plate can be asymmetric, i.e. the face sheets
may have unequal thicknesses (Bagure 3) and unequal
elastic properties;

In the modelling of the insert—sandwich plate system itis ¢ the core material in both the potting and honeycomb
assumed that the interaction between adjacent inserts, as regions is assumed to behave as a special type of

Model definition
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Considering the conditions for equilibrium in the core
material, the following relations can be established:

Face 1 (top) Trz,2=0
Toz,z= 0 (2)
1 1
Axis of oy Ocz+ Trzr + — 7'rz + - 7'02 9=0
symmetry

where differentiation with respect to the spatial coordinates
is denoted by a subscript comma. This convention is
adopted throughout the paper. In eqn @®)is the core
transverse normal stress, angd and 74, are the core shear
stress components. From the first two equations in egn (2), it
follows directly that the core shear stress components are
independent of the.-coordinate. The equations in eqn (2)
are identical with the core equilibrium equations obtained
/ by Librescd, because the same weak core assumptions have
been adopted priori.
- s ical definition of sandwich olate el . ting of Combination of the core equilibrium equations, eqn (2),
e coithg o ywith the core kinematic and constitutve relations yields a
and bottom face sheet (face 2) set of equations describing the complete core stress and
displacement fields in terms of the transverse core
transversely isotropic material only possessing stiffness coordinatez, (measured from the core middle plane) and
in the through-the-thickness directiom(irection, see in terms of the face sheet displacement components. The
Figure 3, where the plane of isotropy is parallel to the complete derivations are presented in Appendix A, and the
middle plane of the core; resulting core equations read:

i1y 0, Z0) = 71,(1, 6)
T@z(r- 0, Zc)zTez(rv 0)

oc(r, 0, z)= %{Wl_wz} {Trzr+ Trz + :-Teze}zc

1 1 c?
w(r, 0, ZC)=Wl+ } { } E, {Trzr+ Tz + — r 7'02,0}{25_ Z}
Wlr A 3] WA (Z cl c
Ue(r, 0, Z) =g + > {fl_c ZC+4}+2{C_Z°+4}+GC{ZC_2}
JLif 111 1 (2 dz &
ZEC Trz, rr Trzr I‘Z Trz rTGZ,er r2 Toz,60 C 4 12
w A ) Wy (7 cl c
I A ) _x_ bt o) e z 1oz _z
Ve(r, 6, zc) =gy + or {fl c &t 4}+2r {c Zc+4}+ C{Zc >
1 1 1 z %z ¢
+72rEC {Trzr0+ Tr20+70100}{c_4+ 12} 3

« the top and bottom face sheets may deflect differently, i.e. In egn (3)E. andG. are the core elastic constantg, v, and
no assumptions about the sandwich plate displacementw, are the radial, circumferential and transverse displace-
field are adopte@ priori. ment components of the core material;, by andw' (i =
1, 2) are the radial, circumferential and transverse displace-
ment components of the top and bottom faaeandé are
Derivation of core equations the radial and circumferential coordinates.

From egn (3) it is noticed that,, and 74, do not vary
cross the core thickness. It is further seen thataries
inearly, thatw, varies quadratically, and finally that and

V. vary cubically over the thickness of the core.
op=0p=Trp=0 1) The core material response is coupled with the face sheet

As a direct consequence of the weak core assumptions
adopted, there can be no transfer of in-plane stresses in th
core material, i.e.
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responses by requiring continuity of the displacement field andQ; are the face sheet radial transverse shear stress result-
across the core—face sheet interfaces. This implies that theants ( = 1, 2). In eqgn (5) two new “core variablesq, and
following surface tractions and shear stresses are transferred), have been introduced:
between the core and the face sheets:
Qr(ra 0) =Trz,r» QB(ra 0) =Tro,r (6)
top face—core interface:
Adopting the matrix of fundamental variableg({, )}, the

oc? = oc(r, 6, ¢/2) (42) governing equations can be reduced to the form
iz =Tl 6) (4b) {0, O}, =¥, 0, {y}, {0 {Vhao ) (D)
7= To(1 0) (4¢) where ¥ denotes 24 linear functions inyfr, 6)} and its
bottom face—core interface: derivatives with respect th The complete set of governing
bort equations (including the equations for the top face sheet, the
oe " "=og(r, 0, —cl2) (4d) core and the bottom face sheet) is given in Appendix B. As

is seen from the complete set of governing equations given
in Appendix B, transverse bending and in-plane stretching
effects are coupled in the derived high-order sandwich
plate theory. This is a consequence of the interaction
between the two face sheets through the core material,
through which shearing and transverse normal stresses are
transferred.
The dependency of thé-coordinate is eliminated by
The face sheets are modelled as elastic plates, with theFourier series expansion of the fundamental variables, thus
possibility of including transverse shearing effects in reducing the problem to two sets of 24 first-order ordinary
the modelling. Thus, the plate model adopted correspondsdifferential equations. In abbreviated form the complete set
to a Mindlin—Reissner type of plate theory. In cases where of Fourier series expanded set of governing equations can be
the face sheets are thin, the transverse shearing effects in thepecified in the form:
face sheets themselves can be ignored compared withsymmetric aboué = O:
the transverse shearing of the core material. In the actual
case, the degrees of freedom corresponding to the rotation (Yn(D}.r =[An(MHY(} +{Bn()}, ~ n=1—c (83)
of the normals to the face sheet middle surfaces were
locked, and consequently the modelling of the face
fr?eec;art;, was achieved using a Love—Kirchhoff type of plate {92} r =AM In(N)} +{Bn(n)}, n=1— (8b)
Formulation of the equilibrium, kinematic and constitu- where {y,(r)}, { ,(r)} are 24 X 1 matrices of--dependent
tive equations for the top and bottom face sheets, andcoefficient functions of the Fourier series expanded vector
combination of those with the core equations (eqn (3)) and of fundamental variablegA,(r)] and[An(r)] are 24X 24
continuity requirements (eqns (4)), yields the governing set coefficient matrices; B,(r)}, { By(r)} are 24 X 1 matrices
of differential equations. It turns out that in this formulation of nonhomogeneous load terms.
the order of the set of governing equations is 24, since the
necessary number of boundary conditions to be specified
along an edge is 12. Consequently, the governing equationsSpecification of boundary conditions
can be reduced to 24 first-order partial differential equations e actual statement of the boundary conditions varies
with 24 unknowns. _If the 24 unknowns, h(_a_nceforth caIIed_ somewhat from load case to load ca€e T, M or N, see
the fundamental variables, are those quantities that appearifkigyre 2), but with reference toFigure 2 the imposed

the natural boundary conditions at an edge: constant, boundary conditions are generally derived from the
then the boundary value problem can be stated completelyfonowing assumptions:

in terms of these variables. In the present case, thg 24

Trz = Tro(1, 0) (4e)

7oz = To(I', 0) (4f)

Derivation of the complete set of governing equations

skew-symmetric about = O:

matrix of fundamental variables can be written as e r=Db;: the through'the'thiCkneSS insertis considered as an
infinitely rigid body to which the face sheets and the
{y(r, 0)} ={u, udp, W B, 83, N* NY, M, MY, potting material are rigidly connected;
* r = by continuity of the fundamental variables across the
Q. Trz Grs Toze Gy Uy, Ubg, WP, B7, 65, NP, NG, potting—honeycomb interface;

e r = a it is assumed that the face sheet and honeycomb

2 2 2
M7, Mo, Q} ® core midsurfaces are simply supported.

wheres! andB‘e_ are the rotations of the normals to face sheet ~ Generally, the boundary conditionsrat b; andr = aare

midsurfacesN; and N!, are the face sheet in-plane stress stated by specifying linear combinations of the fundamental
resultantsM; andM;, are the face sheet moment resultants, variables, i.e.
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symmetric aboué = 0: IMPLICATIONS AND LIMITATIONS OF THE
DEVELOPED THEORY
[TRHYa( =B} ={ Yo} (92)
The face sheets are treated as homogeneous, isotropic and
[Tal{yn(r =a)} ={ Y3} (9b) linear elastic. Obviously, this is a simplifying assumption as
the face sheets are often made as FRP-laminates. However,
skew-symmetric abouk = O: the adopted approximation is quite reasonable in reality,
b " since strongly orthotropic face-laminates are hardly ever
[TaH¥(r=b)} ={Yn} (9c) used around inserts or other areas of load introduction.
o a Instead, if the surrounding sandwich structure is made with
[Tal{¥n(r=2a)} ={Yy} (9d) strongly orthotropic face-laminates, the zones around the

L inserts will be reinforced locally such that the resulting
where [Ty], [Ti] (i = b, @) are 24 X 24 non-singular  |aminates appear as nearly quasi-isotropic with respect to
transformation matrices, andY{}, { Yo} (i = b, @ are  the in-plane properties. For the cases where slightly
24 X1 matrices containing the fundamental variables at orthotropic face sheets are used, the present formulation
r=b; and r=a (and thereby also the 12 prescribed will provide sufficiently accurate results if the engineering

boundary conditions at each location). It should be constantsE; and »? of the face sheets are replaced by
emphasized that the form of eqns (9) does not involve any effective quantities defined b§

restrictions on the boundary conditions, and that any

geometric or natural boundary conditions can be stated in (E)et = \/ﬁ
this form. ) T =1 2) (10)
() =y Pyi

Numerical solution: multi-segment method of integration where subscriptx andy denote principal material direc-

The sets of governing equations (eqns (8)) together with tions. For the rare cases where strongly orthotropic face-
the statement of the boundary conditions (eqns (9)) laminates are used, the model in its present form is not
constitutes a boundary value problem. No general closedapplicable. However, it is possible to include orthotropic
form solution for this problem is available, and a numerical face sheet properties in the formulation.
solution scheme was therefore developed. The honeycomb core material is modelled as being a

In the present case the boundary value problem washomogeneous, isotropic and linear elastic material which
solved numerically using the “multi-segment method of supplies a continuous support for the face sheets. This is in
integration”. This method offers the following features: conflict with the physical problem on two points. Firstly, the
hexagonal cell structure of honeycombs results in ortho-
tropic in-plane properties. However, orthotropic core
properties can be included in the formulation. Secondly,
the discrete cellular nature of honeycomb materials has been
excluded from the analysis, as the honeycomb properties are
effectively “smeared out” over the honeycomb cell areas.
Thus, the stresses obtained for the honeycomb material

Without giving the details, the method is based on a should be considered as “averaged” over the honeycomb
transformation of the boundary value problem into a series cell areas. Consequently, the actual load transfer mechan-
of interconnected initial value problems. The insert— isms in the cell walls of the honeycomb core are not
sandwich plate configuration is divided into a finite reflected by the “average” core stresses obtained. The core
number of segments, and the solution within each segmentstresses obtained, however, comply well with the
is derived by direct integration (simultaneous integration of “smeared” or overall stiffness and strength properties
24 X 24 =576 first-order differential equations). Continuity ~supplied by the manufacturers of honeycombs.
of the solution vectorg{y,(r)}, {¥,(r)}) across the separa- Finally, it should be noted that the sharp separation
tion points between the segments, as well as fulfilment of between potting and honeycomb assumed in the modelling
the boundary conditions at= b; andr = a, is ensured by  represents on idealisation. In reality the potting—honeycomb
formulating and solving a set of linear algebraic equations. intersection is highly irregular, as it is created when the
Further details about the multi-segment method of integra- potting compound flows into those honeycomb cells which
tion can be found in Ref. 11. The implementation of the have been left open during machining in preparation of the
numerical solution scheme was accomplished using ainsert hole. This problem can only be surmounted by
UNIX-version of MATLAB", version 4.1, installed on an  adopting a model which accounts for the discrete nature of
HP9000/700 work station. The direct integration was the cellular honeycomb materials.
carried out using an adaptive step-size fourth- and fifth- Pertaining to a comparison between the suggested high-
order Runge—Kutta—Fehlberg method. Detailed informa- order sandwich plate theory relative to classical antiplane
tion about the applied numerical solution scheme can be sandwich theoriés* the following comparative features
found in Ref. 9. should be highlighted:

* it is easy to implement;

it can be applied conveniently to systems of first-order
ordinary differential equations;

e it permits arbitrary radial variations, including
discontinuities, of all the dependent variables of the
problem.
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EXAMPLES

In the following some numerical results for the case of
sandwich plates with through-the-thickness inserts are
presented. Two important load cases are discussed:

(1) out-of-plane loadQ (axisymmetric), se&igure 2

(2) bending moment loading/l (non-axisymmetric), see
Figure 2 The discussion of the two load cases will be
based on the same geometry and material data:

Geometry: bj = 10 mm,b, = 30 mm,a = 150 mm,c =
10 mm,fy =f, =1 mm.
Top face: quasi-isotropic FRP-laminate with properties

Eq = 40 GPayy = 0.3.

Bottom face: as top face, i.&p = Eq, v = vyg.

Potting compound: bulk epox§, = 2.5 GPaG, = 0.93 GPa.

Honeycomb core: Hexcel honeycomb 3/46056—0.0007 Ej, =

310 MPa,Gy, = (Gw + G)/2 = 138 MPa.

Out-of-plane loading @ load case)

The case of external out-of-plane loadiQgis probably
the most important of all the load cases, and design
guidelines for this load case can be found in Ref. 12 for
instance. However, no elaborate description of the deforma-
tion patterns and stress distributions are given in Ref. 12,
and the guidelines specified do not supply detailed insight
into the mechanics of the sandwich plate—insert problem.

In the example presented it is assumed @at — 1.0 kN
(i.e. “comprehensive” out-of-plane loading).

Figure 4 shows, the lateral deflections of the face sheets
(w!, w?), and the core midsurfacev{(z. = 0)).

In Figure 4(and the figures to come) it is noticed thak
b, = 30 mm corresponds to the potting region, whereas
30 mm corresponds to the honeycomb region. From the
results displayed, it is seen that the lateral deflections of
the two face sheets and the core material midsurface are
almost identical. As expected, owing to the symmetry of the
sandwich plate considered, the lateral displacements of

+ The suggested high-order theory supplies information the two face sheets® andw? are identical. The midsurface
about the displacement fields of each face sheet, as welllateral displacement of the core matenml (potting and
as of each point in the core material. The core displacementshoneycomb), however, is slightly different from* andw?

are predicted to vary non-linearly through core thickness.

close to the insert—potting and potting/honeycomb inter-

» As opposed to this, classical antiplane theories assume thdaces (difficult to see from the figure) where the core
core thickness to be constant. Consequently, the in-planeproperties change abruptly. The differences between the
core displacements are predicted to vary linearly over the lateral face sheet displacements and core displacements,
core thickness.

+ Both types of theory assume that the core shear stresse¢ransverse normal stresses.)( in the potting and the
are constant through the core thickness (consequences ochoneycomb core.

neglecting the in-plane stretching and shearing core stiff-

encountered at these locations, causes the inducement of

Figure 5shows the stress distribution in the core material.

nesses), and there is very little difference between the The values of the transverse normal stressre given at the
predicted values. However, the high-order sandwich interface between the top face sheet and the agif8)(as
plate theory accounts for the existence of transversewell as at the interface between the bottom face sheet and
normal stresses in the core material. The transversethe core (IE’O“O"‘). According to the high-order sandwich
normal core stresses will in many cases play an important plate theorys. varies linearly over the core thickness, see

role in the onset and development of failure.
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0.5 weak bonds between the insert and the potting as well as
] between the face sheets and the potting.
0+ However, the stress concentrations encountered at the
i potting honeycomb intersection, and immediately after that,
0.5 might cause a premature failure. The active failure
§ A mechanisms could be one of three.
&
£ ]
§ 1 5_: Top-surface of honeycomb:
a° ]
= 5] the tensiles'P stresses might cause a failure in the (weak)
'*g" ] bond between the top face sheet and the honeycomb.
2.5 . : :
] Potting—honeycomb intersection
3]
] the 7, stresses might cause a shear rupture of the core
3 e — surrounding the potting material.
0 25 50 75 100 125 150
r, mm Bottom-surface of honeycomb
Figure 6 Radial bending moment resultaiéy’, M2. Q = 1.0 kN the compressive?Ottom stresses might cause a compression
failure (buckling) of the honeycomb cells.

In practice, core shear rupture of the undoubled core foils
transverse core shear stress componegpt which is is the cause of structural failure in most cases, i.e. shear
assumed to be constant over the height of the core material failure occurs at the potting—honeycomb intersection
see egn (3). Figure 6 shows the distribution of the radial bending

Considering theo-distribution, it is observed that the moment resultant®! and M?. It is observed tham?! and
presence of transverse normal stresses is a very localM? are identical (owing to the symmetry of the sandwich
phenomenon, as significant-contributions are only  plate considered) and that they attain their peak values at the
present close to = b; = 10 mm (i.e. close to the insert) insert—potting intersectiorr & b; = 10 mm). The location
and close tor = b, = 30 mm (i.e. close to the potting— of the peak bending moment resultants at this location is due
honeycomb intersection). It is seen thd and ¢2°"™ are to the restrictive boundary conditions imposed by the insert.
of opposite signs, i.e. when one is compressive the other is Another local peak is seen around the potting—honey-

tensile and vice versa. comb intersection at = b, but the decay oM} and Mr2 is
Considering the shear stress distribution in the core seen to be complete a short distance away fromb,,.
material, the overall tendency is thaf, decreases with The results presented demonstrate that complicated load
increasing -values. The overall tendency of decreasitg transfer mechanisms are active in sandwich plates with inserts.
values with increasingis a consequence of the fact that the This is especially pronounced in the regions close to the insert,
total transverse shear stress resul@ff'= Q! + Q? + cr,, and close to the potting—honeycomb interface, i.e. in regions

is inversely proportional to (vertical equilibrium requires  where significant changes of geometry and stiffness properties
Q=27rQ°®), and that the main part & is carried by the  take place. Away from the locations of discontinuous change
core material (i.e. by,). It is further seen fronfigure 5 of geometry or material properties, the core material carries the
that the abrupt change of core stiffness at the potting— load in pure shear and no local stress concentrations are
honeycomb intersection only causes minor fluctuations of present. In these regions, classical antiplane sandwich plate
the 7,,~distribution. theory'~*is capable of describing the stress state accurately.

Considering the combined influence of the transverse
normal and the shear stress components on the potting an
honeycomb materials, it should be noticed that the
mechanical properties of the two materials are very To further demonstrate the capabilities of the developed
different®. Thus, the stiffness and strength properties of high-order sandwich plate theory, an example of a circular
the honeycomb material are usually an order of magnitude sandwich plate with a through-the-thickness insert subjected
lower than those of the potting. to an external bending momehkt (non-axisymmetric load

Recalling fromFigure 5 that the magnitudes of the peak case; se€igure 2) is presented. The bending moment load
stresses in the potting and honeycomb regions are about theease is highly realistic, even though it is generally
same, it is then seen that a “weak spot” is located at the recommended to avoid this load type through proper
position of the potting—honeycomb intersectionr(at by) design (using groups of inserts instead of just one insert).
as well as a short distance into the honeycomb material. The geometry and material data are assumed to be the same as

From this, it is concluded that the stress concentrations in for the Q load case. The external bending moment is assumed
the potting region (closest to the insert) are not likely tobeM =25 N m, and is imposed by rotating the though-the-
to cause a failure, except for the possibility of failure due to thickness insert as a rigid body about the core midsurface.

cEiending moment loadindV load case)
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Figure 7 showsw!, w? andw,(midsurface)= w(z. = 0) part of the deformed top face sheet, extending frany=
along# = 0 (varies as co8], seeFigure 2. The lateral (0,0) tor = (x* + y? = b, = 10 mm in all directions
deflectionsw! andw? of the two face sheets, as well as the corresponds to the rigid through-the-thickness insert.
lateral deflection of the core midsurfaee(z. = 0), are Figure 9 shows the distribution of stresses in the core
slightly different from each other exceptrat b; = 10 mm material (potting and honeycomb), and the close resem-
andr = a = 150 mm owing to the imposed boundary blance with the core stress distribution for tdoad case

conditions. (displayed in Figure 5) should be noted. Four stress
A characteristic feature of the results showrrigure 7is components are showr®?, 2™ and 7,, which are

the abrupt change of sign of the deflection “slope”, which given alongd = 0 (they vary as cos}y, and 74, which is

is seen around = b, = 30mm, ie. at the potting— given alongd = =/2 (varies as sif)). It is seen that

honeycomb intersection. significant peaks of the transverse normal stres$8sand

Figure 8shows a surface plot of the deflectional response ¢2°"™™ are present close to the insartf b;) and around the

of the top face sheet of the insert—sandwich plate system.potting—honeycomb intersection £ by).

The deformed face sheet is symmetric altbst0 (9 = 0 is It should be noted that the absolute valuess8P and

coincident with thex-axis in Figure 8 and, therefore, only o'c’om’m are not the same. The reason for this “asymmetric”

one half of the deformed face sheet is shown. The centralbehaviour (not even ‘“skew symmetric” about the core
midsurface) is that the stress states in the two face sheets are
not identical, thus causing an asymmetric core stress
distribution to appear.

The presence ofryg, is a consequence of the non-

0 : ! .
] axisymmetric nature of thé/ load case. It is observed
-0.014 that 7, builds up and attains its peak value approximately in
] the middle of the potting (at= 20 mm). It should be noted
£ 0021 thato'°P, ¢2°"°™ andr,, attain their peaks alongy= 0 andf
N = m, whereag, attains its peak values fér= «/2 andf =
. -0.03 : bottom
2 37/2. It is therefore concluded that the peaks8F, o°
~" 004 andr,, never occur at the same locations as the peakg,of
* Pertaining to the combined influence of the transverse
-0.05- normal and shear stress components on the potting and
] honeycomb materials, reference is made to the comments
-0.06 J B given for theQ load case.
w' (0=0), w*(6=0) . . .
Figure 10 shows the radial bending moment resultants
-0.07—:  (0-0 M} and M? along6 =0 (M} andM? vary as cod). It is
0,08 S : : seen that the magnitudes of the bending moment resultants

0 25 50 75 100 125 150 in the two face sheets are dissimilar. Around the potting—
honeycomb intersection at= b, = 30 mm a characteristic
“disturbance” of theM; distributions is seen.

For examples involving sandwich plates with through-

r, mm

Figure 7 Lateral displacements'(6 = 0), w36 = 0), w,(z. = 0,8 = 0).

M=25Nm the-thickness inserts subjected to other types of external
/
/ ]
0.08 =
0.06 _/ /
004 L7
0.02 ~/ e
P 1 S
N P L s
-0.02 / :
0.02
0.04 -/ o
-0.06 -/ \0,06
- '0.08

X, mm 100 ) W

Figure 8 Surface plot of the deformed top face sheet (one half shoMnk 25 N m
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Figure 9 Core stress component&P(9 = 0), ¢2°"°™9 =0), 70 = 0),

To0 = w/2). M =25 N m
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—
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Figure 10 Radial bending moment resultamts (9 = 0), M3 =0). M =

25Nm

loading (sed-igure 2) and sandwich plates with fully potted

inserts (sed-igure 1) see Refs. 9,10.

DISCUSSION OF DESIGN ASPECTS

ComparingFigures 5and6 for the out-of-plane load case,
andFigures 9and10 for the bending moment load case, it

o
125

150

honeycomb material, or, in other words, to ensure that a
proper shear load transfer can be accomplished between the
insert and the honeycomb material. This connecting function
is obtained when the potting compound is injected and flows
into those honeycomb cells that have been left open during
machining (in preparation of the hole for the insert).

The other, or “secondary”, function of the potting
material is associated with its participation in the overall
load transfer, and is less obviously recognised than the
simple connecting function mentioned above. Thus, the
potting compound plays a significant role in the load
transfer in insert—sandwich plate systems, especially those
subjected to “transverse” load types (i.© and M load
cases, sefigure 2. The presence of a potting compound,
which is usually 5—-10 times stiffer than the honeycomb core
material, causes a considerable relief of the peak bending
and shear stresses in the face sheets (located adjacent to the
insert). This stress relieving function is achieved because
the relatively stiff potting compound acts as an “attractor”
on the transverse shear stresses in the sandwich plate.

Based on the results presented herein, as well as the
results of extensive parametric studies presented in Refs.
910 3 set of guidelines for the design of sandwich plates
with through-the-thickness inserts has been formulated.

« If possible, the radial extension of the potting compound
(bp — bi, seeFigure 2 should be about Oth. This will
ensure utilisation of the full shear stress transfer capabil-
ity of the potting, while ensuring maximum relief of the
face sheet bending and shear stress concentrations at the
same time.

* If possible, the ratio of the potting stiffness to the honey-
comb stiffnessEy/E;, should be chosen so thBy/E;, =
3—4. This will ensure a good compromise between the
peak stress level in the face sheets and in the potting and
honeycomb materials.

» The external bending moment load case should generally
be avoided. This can be achieved by application of the
external loads through groups of inserts, thus converting
the bending loads to out-of-plane loads on the inserts.

» As severe stress concentrations in the potting and the
adhesive bond lines cannot be avoided, the materials
chosen for the potting and adhesive bonds should possess
long elongation to failure capability.

The listed design guidelines, which have been derived by
use of the high-order sandwich plate theory presented herein,
generally agree well with the recommendations specified in for
instance the ESAnsert Design Handbool.

CONCLUSIONS

A high-order sandwich plate theory has been developed and
adapted for the analysis of sandwich plates with inserts. The

should be recognised that the potting compound plays anformulation presented herein was developed for sandwich
important structural role in the overall load transfer around plates with potted through-the-thickness inserts, but it can

the insert.

Obviously, the “primary” function of the potting material

be extended and adapted for the analysis of sandwich plates
with inserts of the fully potted and partially potted types.

is to provide the connection between the insert and the Mathematically, the insert—sandwich plate problems appear
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as sets of first-order partial differential equations, which can restrictive assumptions, the core constitutive equations
be solved numerically in a convenient and cost effective and the core kinematic relations can be expressed as

manner using the multi-segment method of integration. (whereo, = g, in the core):

Modules for the analysis of sandwich plates with through- o.—E.& (A7)
the-thickness, fully potted and partially potted inserts (under o e
general load conditions), based on the presented high-order Tr =G Yrz (A.8)
sandwich plate theory, are currently being included in the
software package ESACompESAComp is a software 7oz = GozYp2 (A.9)
package for the analysis and design of composite laminates
and structural elements, which is under development for the 2= We,z (A.10)
European Space Agenty re =W + Ut (A1)

1
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1
Toz= GGZ{Vc,z+ ch,G} (A.15)

Ineqgns (A.10), (A.11), (A.12), (A.13), (A.14) and (A.1%)
represents the transverse displacement of the core material,
andu. andv. represent the radial and circumferential core dis-
placement components respectivély.is the transverse elas-

. . tic core modulus of the core {direction), andG,,, G4, are

Al. Basic assumptions the transverse core shear moduli (in cylindrical coordinates).

The core material is assumed to be a special type of trans- 1he core material (se€igure 2) is assumed to be of
versely isotropic solid only possessing stiffness in the honeycomb type, which is most conveniently described as an
through-the-thickness direction, and with the plane of orthotropic material in Cartesian coordinates (characterised by
isotropy parallel with the core middle plane (i.e. the in-plane its “W"-and “L"-direction properties: Gy, G.), and it is not
stretching and shearing stiffnesses are assumed to be negligiconvenient to describe the material in terms of two shear
ble). Thus, the core material is modelled as a weak or compliantmoduli in cylindrical coordinatesQy, Gg,). Instead, in the
core, as discussed by Libre§ciConsequently, the in-plane honeycomb region, the core material is suggested as being

APPENDIX

A. DERIVATION OF CORE DISPLACEMENT AND
STRESS DISTRIBUTIONS

stress components are nil (d&igure 3for coordinates): approximated as a transversely isotropic material as follows:
— Gw+G
o =09=T1p=0 (A.1) Gy, ~ Gy,=G, =G = % (A.16)
Adopting eqn (A.1), the core equilibrium conditions read ) _ _ )
In the potting-region of the sandwich core, the adoption of
Tiz,z=0 (A.2) only oneG-modulus G, = G,) requires no additional com-
ments, as the potting material is isotropic.
Tgz2=0 (A.3)
1 1 A2. z-dependence of displacement and stress fields
Oc,z+ Trzr + T Trz + r Toz,9 =0 (A.4) ) ) ) )
_ By integration of egn (A.13) with respect to the core thick-
From eqns (A.2) and (A.3) it follows that ness coordinate between limits= ¢/2 (c is the core thick-
721, 0, ) = 7,(r, 6) (A.5) ness, se€igures 2and3) andz. (using integration by parts
and using egn (A.9)), and by requiring continuity of the
To,(r, 0, Z2) = 74,(r, 6) (A.6) transverse displacements across the interfaces between the

i.e. the shear stresseg andr,, are predicted to be constant €0re and the face sheets*, the following is obtained:
through the thickness of the core. Z 2

It is further assumed that the core material behaves in aw, ,= I o dw, = J %o dz wy(r, 0, zo)
linear elastic manner, and that only small displacements B Jo2 o2 B

negligible rotations) are considered. Given these additional 1 c
(neglig ) =w+ E {zcac(r, 9, z,) — éoc(r, 9, C/Z)}
*The following conditions are required to be fulfilled: 1 1 1 Zg C2
w(r, 0, c/2)=wk(r, 0); we(r, 0, —c/2)=WwA(r, 6) TE e et r o127 g (A.17)
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wherew! = w(r, 6) is the transverse displacement of the top whereas subtraction of eqn (A.20) from egn (A.18) yields
face (face 1).

Insertingz, = — ¢/2 (corresponding to the bottom surface _Ec 1 1 c
of the core) in eqn (A.17), and requiring continuity of the oc(r, 0, ¢/2) = F{Wl — W} =Tt Tt Tz [ 5
transverse displacements of the bottom face sheet and the (A.22)
core, yields
We(r, 6, —c/2) =wt Inserting egn (A.22) into eqn (A.19) gives the desired

expression fow(r, 0, z.):
1 c c
+=d = Zadr, 0, —c/2)— Za(r, 0, ¢/2) E T 1
EC{ 2 2 oE } Uc(r1 0, ZC)ZCC{Wl_WZ}_{Trzr"‘ Trz + rTez,a}Zc
S olr, 0, —C2)+oe(r, 0, /) ==~ {w'—w?} (A.18) (A.23)
wherew? = WA(r, §) is the transverse displacement of the
bottom face (face 2).

Integration of eqn (A.4) and utilising egns (A.5) and (A.6)
yields {wh —w?} c

1 1 we(r, 0, Zc)=W1+f{zc—§}

Ocz=—\Tizr + = 7'rz‘i‘ FT(ﬁz,G

1 1
2E {Trzr+ Tz + 7'6 0}{25__} (A.24)

from which it is observed thatv, varies as a quadratic

Inserting eqns (A.22) and (A.23) in the derived expression
for w(r, 6, z.) (given by egn (A.17)) yields

1 1 %
s o2 d0c= - Trz,r+FTrz+ FTO,Z,H o2 dz

& oq(r, 0, z.) — oq(r, 0, c/2) function through the core.
The z. dependency of the radial core displacement com-
_ {Trz 4 1Trz+ 17026}{4_ E} (A.19) ponentu, can be derived by integrating egn (A.14) with
r 2 respect to the transverse coordinate (between limits
Settingz, = — ¢/2 in egn (A.19): z,=¢/2 andz;). In the computations, eqn (A.24) has been
utilised, fulfilment of continuity of the radial displacements
oo(r, 0, —c/2) —ol(r, 6, c/2)= {Trz A 1Trz+ }Tew}c across the core—face sheet interfacest has been required,
r and the face sheet kinematic relationst have been used:
(A.20) -
. - : Ue,z = - We,r <=
By addition of egn (A.20) and eqgn (A.18) the following is G '
obtained:
_ Tz wh {er —W,zr} c
1 1 c Uc,z—g_ S Zc_é
oc(r, 6, C/Z)—_{Wl W2}+ Tizr T 7 7'rz‘}' 7026 2 ¢ ¢
1 1 1 1 1
(A-21) + E {Trz = 7'rz r— rz Trz + F Toz,or — I'_Z Trz,e}
C
2
T By requiring fulfilment of X {Zg - Z}<:>
uc(r, 6, c/2)=u(r, 6, —f,/2); 5
2 ue(r, 0, z) =ug Br f—é—zc+3c _B
u(r, 8, —c/2)=ug(r, 0, f/2) e\ U or 1 2
T Adopting the classic Kirchhoff assumptions, the face sheet kinematic
relations read { é — 7.+ E} Tz {Zc _ E}
c 4
W,lr:_ﬁs; Vv,zrz_ﬁr2
f 1 1 1 1 1
U, 6, —1u/2) = Uy — 2 B o, e Ty e T 2T T T 2 Mo
§ By requiring fulfilment of c? cd
. x{i_chu} (A.25)
Ve(r, 0, c/2)=u5(r, 0, —F1/2); c 4 12
Ve(r, 8, —c/2)=Ua(r, 6, £,/2) egn (A.25) shows that, varies as a cubic function through
e Y the core.

I Adqpting the classic Kirchhoff assumptions, the face sheet kinematic Similar to the derivations shown foru, the
relations read . . .
Z. — dependency of the circumferential core displacement

}Wlﬁ = —B% }er =—3 V. can be found. By integrating eqn (A.15) with respectto
r utilising egn (A.24) again, requiring continuity of the

. o circumferential displacements across the core—face sheet
us(r, 6, —f1/2)=ug 50

interfaces§, as well as using the face sheet kinematic

805



Analysis and design of sandwich plates with inserts: O.T. Thomsen and W. Rits

relationd, the following is obtained:

T 1
Ve,z= Gii_ FWC,H@
_ Toz 1Wl {VV1 VVZQ} C
Vez= G r ' rc 2

(A.26)

As was the case far,, it is observed that. varies as a cubic
function through the core.

B. COMPLETE SET OF GOVERNING EQUATIONS

B1. Governing equations for the top face sheet

v v N;
U%r,r— L g — T1U000+Al (B.1)
N
1
Upr=—-u B.2
06, r 0re+ +A1(1—V1) (B.2)
W= — g (B.3)
1 V1, Ml
6r,r:__5r_ 600+_ (B-4)
r D,
Ml
1 0
=97 B.5
B@,f Dl(l_Vl) ( )
A(1—23) A(1—»3) (1—)
N = Al AT G
1.4
- Nrg g + 72 (B.6)
A(1—23) A(l—2) v
N = — — 2 Y WGrg— — 2 L UG, 00 — lN
2
— N+ 7z (87
D,(1— ) Di(1— ) (1—w»)
Mir= =5 Bt = Bl — M
1 f
- = Mre 0 +er - Eszr (B.8)
Di(1—w)v D,(1- V)V
Mg, = — — 2 Ligr, - YL 6l 0
1-» 2 f
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Dy(1—»y)

D;(1—»y)
g — 3 B3 606

r3

E
er,rz ?cwl_

1 1 c c E.
_I‘_ZM}’M_FQ%_E rz — 2qr r7'026 CW2

(B.10)

B2. Governing equations for the core

(B.11)

Trz,r = 0O

12, 6E.(f,+¢) 1 12E,
Or,r = — 3 Uor + 3 By I’_2+ CZ—GC Trz

6E:(f2+C)
3

1 1 12E, ,
—FQr‘Fr—zTa;e—FQB,a'l' 3 Uor +

B2
(B.12)

Tozr =y (B.13)

Ge(3—71) 1 2G, c L Ge(1— 1) ul
CI’2 Or, 0 cr2 00 — CI’2 00, 06

GC(Z_ Vl) 1 GC 1 1
_2emn) Gl
crA(1—py) ° + AL (L—rp) T + - 0

4G 1 1
C\ AL—r) T A=y 2 7

G(3—ry) 2G; , G(1—w) »
= Ugg— —5U —=
+ or? or0 — 2 Yoo or? 0, 09

Ge(2— ) 2 Ge
CrA2(1 - V2) CI‘A2(1 - V2)

qG,r— -

N2, (B.14)

B3. Governing equations for the bottom face sheet

v v N2
u%r,r = - 72 (Z)r I’2 u00 0 + Aiz (B-15)
Uy, = — - U2 +}u2+N7'2‘9 (B.16)
00, r r Or, 0 r (0] Az(l— V2) .
Wi = — 7 (B.17)
v M2
6$,r=——26,——660+f (B.18)
r D,
M2,
g2 =—"1 B.19
G,r Dz(l_ V2) ( )
A(1—v3) A(1— )
er,r: — Ty + 2 r2 2 Ugr+ 2 r2 2 u(2)0,0
1—v» 1
_ r 2) N2 NG, (B.20)
N2 Pol=13) o A=)
r6r—_7'26_r72 0r0 T 06, 60
v 2
_ 72 NZ, — = N2 (B.21)
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f Dy(1—»3 Dy(1—»3
r r
1—v» 1
- % M7 — T Mr20,0+Qr2 (B.22)
f Do(1—wy)w Dy(1—wy)w
Mbpr = — Esze— A 3 2 26245 — 2( 3 2 2 85,66
r r
1-—- 2
+¥M39—?Mfe (B.23)

E c c c E.
Qrz,r: _?CWI_ETrz__Qr__Tez,G‘F ?WZ

Ineqgns (B.1)—(B.24); (i = 1, 2) is the Poisson'’s ratio of the
face sheets, an#; andD; (i = 1, 2) are the extensional and

2 2r
D,y(1—»y) Dy(1—»y) 1
- %5%00 - %53,000 -2 M? g9
1
-0 (B.24)

bending stiffnesses of the face sheets.
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