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Monocoque Hardpoint Design
By Nick Garber
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Load introduction principles

Out of plane In plane
Out of plane loads

e (Core is driving factor
o Density & height
® |Insert radius typical design variable

o Linear capability relationship but mass increases with Shear
Pull-out
square of radius

In plane loads

e Local ply builds usually ideal for increased capability ‘
o Bearing typical failure mode unless small edge distance /?us
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Analytical Capability Determination

e Loads derived from driver input forces (pedals, steering wheel, etc.) as well
as maximum driving forces(braking, lateral acceleration, etc.)

e Equations from ECSS Insert Design Handbook
o Derived for fully-potted, cold-bonded inserts but equations shown to be generally applicable
for hot bonded inserts too (https://wiki.uwracing.com/images/3/31/10.1.1.934.2853.pdf)

e Calculations include knockdown factors for edge proximity and proximity to
other inserts

e Margins tracked in excel document including tabs for each category
o (Next slide)
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Block Insert Design

* Stress interactions between inserts in close proximity drive significantly larger inserts
» It can become advantageous to combine multiple inserts into a single block insert
* Manufacturability
*  Weight savings
* Block inserts often contain a significant amount of structurally unnecessary material
(dark blue region) due to manufacturing constraints
« Cannot be removed or face sheets would sag (pillowing) during cure
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‘Block Insert Design

» Dead space gets filled with “pseudo core”

» Greatly reduces mass while supporting face sheets
during cure and satisfying structural requirements
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Final insert testing .

Reinforced clevis used because projected insert
capability exceeded that of the clevis
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Final insert testing

Out of plane:
e +50% Error
o Conservative calculation 10-60% due to
lack of literature*
e Core shear failure

In plane:
e C(Called at 2700 lbf due to fixture strength
concerns, 12% over predicted

*See directional layups slide for more information L gwcime "
-



Relating test results to real-world performance

3000

Combined loading capability

e Ellipse used for calculations
o Akin to the traction ellipse

e 53g ->20g, 62% weight reduction |
e Tested MoS of 4.83 (driven by mfg. constraints___
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Material and manufacturing considerations

e FDM 3D-Printed PA-12 with 15% discontinuous carbon fiber reinforcement

o Easy to print with compared to other high-performance thermoplastics
o Can be printed on team members’ 3d printers whenever needed

e Great chemical resistance characteristics
o Don’t have to worry about hardpoints dissolving from various solvents present in the shop

e Fiber reinforcement improves compression set qualities and reduces CTE to
minimize delamination during cure

e C(Can survive the temperature and pressure of a monocoque cure
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‘Manufacturing

e Thorough manufacturing plan created to avoid errors during
physically/mentally exhausting monocoque layups
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Directional layups for block inserts

« ECSS calculations derived using Bessel functions which
rely on rotational symmetry and are invalid for block

inserts

* Final block insert uses conservative first order shear deformation
theory which significantly underpredicts capability

» Conservative shear strength values used due to lack of

literature
» Shear strength a factor of strength in both L and W directions
* Experimental data has shown 1.36t,, to correlate well for
rotational symmetry bc’s
» Pure L direction approaches 1.54t, whereas pure W direction
approaches 1.0t,,
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Areas for future development

e Room for optimization of standard spool style inserts

o Reduce through-the-thickness height as shear perimeter increases, full in remaining height
with pseudo core

e C(Characterize the shear strength value based on geometry/direction of the insert
o Likely not worth the testing/validation on FSAE timelines but a fun thought experiment
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