Design of Experiments Applied to Vehicle Dynamics Development

Tim Drotar (TD)

About the author

Tim Drotar is currently a senior staff engineer in vehicle dynamics at Tesla. Prior to joining Tesla, he spent 30 years at Ford Motor Company where he specialized in chassis systems and vehicle dynamics for passenger cars and light trucks. Tim is a member of SAE, SCCA and The Tire Society. He holds a B.S. in Mechanical Engineering from Lawrence Technological University and a M.S. in Mechanical Engineering from the University of Michigan-Dearborn.

Tim also teaches the following classes for SAE:

- Advanced Vehicle Dynamics for Passenger Cars and Light Trucks
 - https://www.sae.org/learn/content/c0415/
- Fundamentals of Steering Systems
 - https://www.sae.org/learn/content/c0716/

Outline

- Learning Objectives
- What is Design of Experiments (DOE)?
- Why use DOE in Vehicle Dynamics Development
- Terminology
- Books/Software
- Example: Screening DOE for Primary Ride
- Example: RSM DOE for transient handling
- Summary

Learning Objectives

At the end of this presentation, you should be able to:

- Explain what a Design of Experiments (DOE) is/is-not
- Explain why one would use DOE in vehicle dynamics development
- Apply common DOE terminology
- Explain the 3 main types of Classical DOE's
- Explain the strength and limitation of each type of classical DOE's

What is DOE?

DOE **is** a statistical methodology to evaluate the effect of multiple factors. These factors are changed simultaneously, according to a predefined pattern, to investigate their effect on the output.

Run	Factor 1	Factor 2		F_n	Response 1	••••	R_{m}
1	Low	Low	••••	High	$R_{1,1}$	••••	$R_{1,m}$
2	High	Low	• • • • •	High	R _{2,1}	••••	$R_{2,m}$
3	Low	High	••••	High	R _{3,1}	••••	R _{3,m}
• • • • •	••••	• • • •	••••	••••	••••	••••	• • • • •
n	Low	Low		Low	$R_{n,1}$	••••	$R_{n,m}$

DOE is not a "Silver Bullet" approach to solving a problem

Why use DOE in Vehicle Dynamics Development?

Efficiency:

DOE enables one to extract the maximum amount of information in the minimum amount of time, as compared to the "Silver Bullet" approach or OFAT (One Factor at a Time) testing.

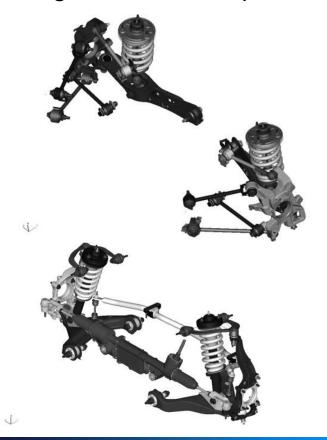
Complexity:

The automotive chassis is very complex; there are a lot of knobs to turn, each with different levels of effectiveness on the response of the vehicle.

Hardpoints (one side):

UCA: 3 attachment points x 3 directions (X, Y, Z) = 9 factors LCA: 3 attachment points x 3 directions = 9 factors Tie rod: 2 attachments x 3 directions = 6 factors

Bushings (one side):


UCA: 2 bushings x 6 stiffness directions (3T/3R) = 12 factors LCA: 2 bushings x 6 stiffness directions (3T/3R) = 12 factors

24 hardpoint factors and 24 bushing factors = 48 total factors! That's just the front suspension!

Why use DOE in Vehicle Dynamics Development?

Complexity:

Furthermore, the vehicle dynamics engineer is concerned with several attributes (ride, steering, handling, braking and acceleration) and must find a single chassis setup that balances all the attributes

Factors

Hardpoints
Bushings
Springs
Dampers
Stabilizer bars
Steering gear
Tires

Responses:

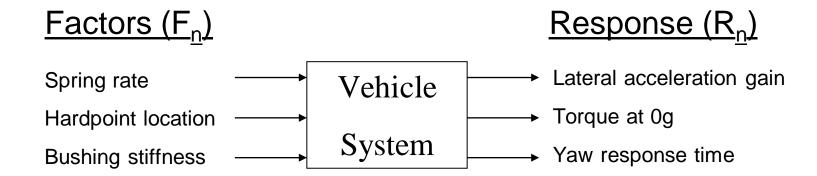
Ride (Primary/Secondary)
Steering (Straight/Cornering/Parking)
Handling (Steady state/Transient)
Error States
NVH (Tactile and Audible)
Durability Road Loads

Why use DOE in Vehicle Dynamics Development?

A veteran vehicle dynamics development engineer will be able to "get the vehicle in the box" with just a few part changes to the prototype vehicle. However, for a relatively new engineer or a seasoned engineer with a brand-new suspension, DOE is a useful tool to help point them in the correct direction.

When used in conjunction with Vehicle Dynamics CAE tools, DOE can be used to:

- Provide direction to the design community on up-front decisions regarding suspension architecture, kinematics and compliances.
- Help resolve any conflicts between attributes that arise in the early stages of design and development.



DOE Terminology

Factor: What you are varying

Response: What you measure

DOE run matrix:

Setting:

Level:

Predefined matrix of experimental runs

Value for the factor

How many factor settings you are evaluating

e.g. low, nominal, high would be 3-level

Types of DOE's

There are 3 main types of DOE methods:

- Classical
- Taguchi
- Optimization

All three methods share the common goal of providing the maximum amount of information about the effect of factor setting on system response, with the least amount of data. The difference between the 3 methods lies in how the experimental design is constructed and how the data is processed. For this discussion, we will concentrate on the "Classical Methods"

There are 3 main types of Classical DOE's:

- Screening
- Factorial
- Response Surface Method (RSM)

Classical Screening DOE

Advantages:

- Allows one to narrow a large number of factors to the "critical few"
 - Prelude to further DOE's
- Obtain information quickly i.e. minimum number of runs

Limitations:

- Lower accuracy than other DOE's
- Can only determine magnitude and direction of factor change on system response
- Can only gather information on the main effect of factor setting, no information on the effect of factor interactions on system response
 - Response = $a_0 + a_1 F_1 + a_2 F_2 + a_3 F_3$
- Typically, only use 2-level factor settings (e.g. low, high)

Some common types:

Plackett-Burman, Fractional Factorial, Taguchi

Classical Factorial DOE

Advantages

- Fewer factors than the screening DOE
- Obtain information on main effects and 2-way interactions
 - Response = $a_0 + a_1 F_1 + a_2 F_2 + a_3 F_1 F_2$

Limitations:

- Allows fewer factors than the screening DOE
- Typically, only use 2-level factor settings (e.g., low, high)
- Linear model of factor setting on system response

Some common types:

Full Factorial, Fractional Factorial, D-Optimal

Classical Response Surface Method (RSM) DOE

Advantages

- Fewer factors than the screening or factorial
- Can generate a highly accurate, higher order equation of the factor setting effect on system response
 - Response = $a_0 + a_1F_1 + a_2F_2 + a_3F_1F_2 + a_4F_1^2 + a_5F_2^2 + a_5F$
- Can use 2 or 3 level factors

Limitations:

- Allows fewer factors than the screening or factorial
- Often requires a large number of runs
- Better suited for CAE than physical test

Some common types:

Box-Behnken, Central Composite, D-Optimal

Classical DOE References

Fortunately for engineers, there are references and software packages that take a lot of the statistical work out of setting up an experiment (e.g. selecting the proper experimental design matrix) and processing the data.

A couple of good books on Classical DOE are:

Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; G. P. Box, W. G. Hunter, J. S. Hunter, Wiley, 1978.

Experimental Designs, 2nd Edition; W. G. Cochran, G. M. Cox, Wiley, 1957

DOE Software

In addition, there are some commercially available DOE software packages that take the statistical labor out setting up the experiment and processing the data:

- HyperStudy Altair Engineering
- LMS Optimus Noesis Solutions
- Minitab Statistical Software
- ADAMS/Insight MSC Software
- DOE Wisdom Launsby Consulting
- JMP SAS Institute Inc.
- iSight Dassault Systemes
- modeFrontier Esteco (Batch process automation + GA optimization)
- HEEDS Siemens (Batch process automation + GA optimization)

Example: Screening DOE for Primary Ride

Suppose we were given a small sports sedan with the following nominal chassis (factor) settings:

<u>Parameter</u>	<u>Units</u>	<u>Value</u>
CoG to front axle	mm	1272
Front Wheel Rate	N/mm	54.2
Rear Wheel Rate	N/mm	58.2
Pitch Radius of Gyration	m	1.13

Use DOE to determine the magnitude and direction of the abovementioned chassis parameter changes on primary ride response, namely pitch and bounce natural frequencies and node locations

A typical screening DOE would be a fractional factorial consisting of 4 factors with 2 levels and 4 responses

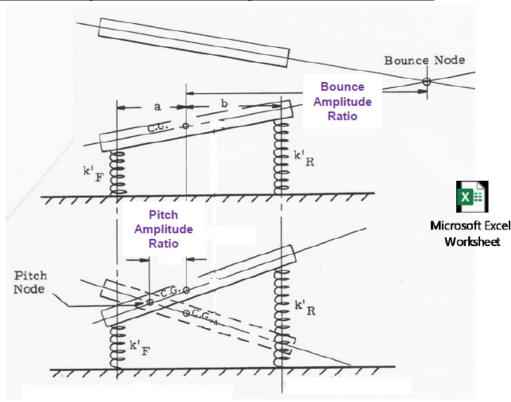
Assume a "low" setting is 80% of nominal, "high" is 120% of nominal

Referring to one of the DOE books or statistical software, a fractional factorial DOE run matrix like the one shown below would be appropriate:

				Pitch
		Front Ride	Rear Ride	Radius of
Run#	Front Axle	Rate	Rate	Gyration
1	-1	-1	-1	-1
2	1	-1	-1	1
3	-1	1	-1	1
4	1	1	-1	-1
5	-1	-1	1	1
6	1	-1	1	-1
7	-1	1	1	-1
8	1	1	1	1

- Note the 2 level factor setting, -1=low, 1=high
- A full factorial would be 2⁴ = 16 runs


In terms of chassis settings:


				Pitch				Pitch
	CoG from	Front Ride	Rear Ride	Radius of	CoG from	Front Ride	Rear Ride	Radius of
Run#	Front Axle	Rate	Rate	Gyration	Front Axle	Rate	Rate	Gyration
1	-1	-1	-1	-1	1018	43	47	0.904
2	1	-1	-1	1	1526	43	47	1.356
3	-1	1	-1	1	1018	65	47	1.356
4	1	1	-1	-1	1526	65	47	0.904
5	-1	-1	1	1	1018	43	70	1.356
6	1	-1	1	-1	1526	43	70	0.904
7	-1	1	1	-1	1018	65	70	0.904
8	1	1	1	1	1526	65	70	1.356

Where -1 = 80% of nominal and 1 = 120% of nominal

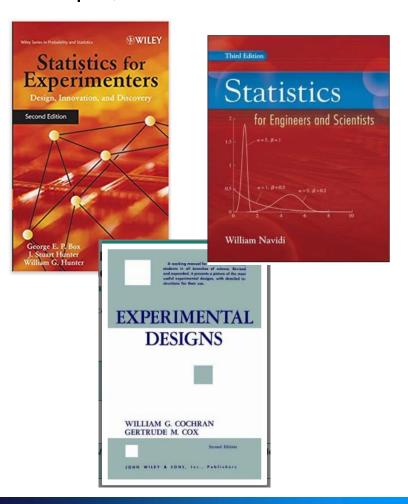
Our 'model' for this experiment are the natural frequency and amplitude ratio (node) equations from the 2 DOF primary ride model previously presented.

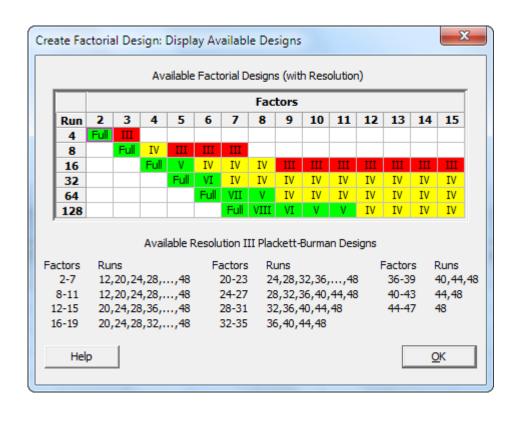
Example - Simplified 2-DOF Undamped Primary Ride Model

$$\left(\omega_1, \frac{A_{z1}}{A_{\theta 1}}\right) = (1.53, 909.44)$$

$$\left(\omega_2, \frac{A_{z2}}{A_{\theta 2}}\right) = (1, 27, -1849.31)$$

Executing the DOE run matrix

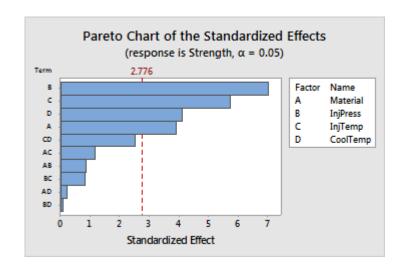

Plugging the factor settings for each run into the 'model equations' we complete the DOE matrix?

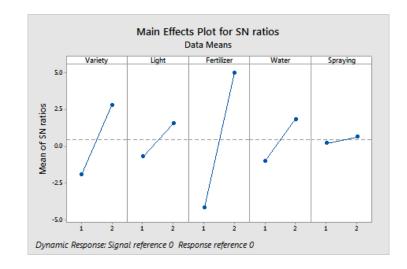

				Pitch				
	CoG from	Front Ride	Rear Ride	Radius of	Bounce	Pitch	Bounce	
Run#	Front Axle	Rate	Rate	Gyration	frequency	frequency	node	Pitch node
1	1018	43	47	0.904	1.659	2.473	-3.220	0.254
2	1526	43	47	1.356	1.731	1.905	-20.289	0.091
3	1018	65	47	1.356	1.929	1.736	21.951	-0.084
4	1526	65	47	0.904	1.876	3.226	5.251	-0.156
5	1018	43	70	1.356	2.249	1.489	1.491	-1.234
6	1526	43	70	0.904	1.874	3.229	-4.594	0.178
7	1018	65	70	0.904	2.030	3.027	-3.220	0.254
8	1526	65	70	1.356	2.118	2.331	-20.206	0.091

Ok, so what do we do with the data?

Processing the data

In the old days, we would break out the statistics book and calculate sensitivities, mean, standard deviation, R-squared, t-values, etc. In this example, we will use the statistical software package called **Minitab**



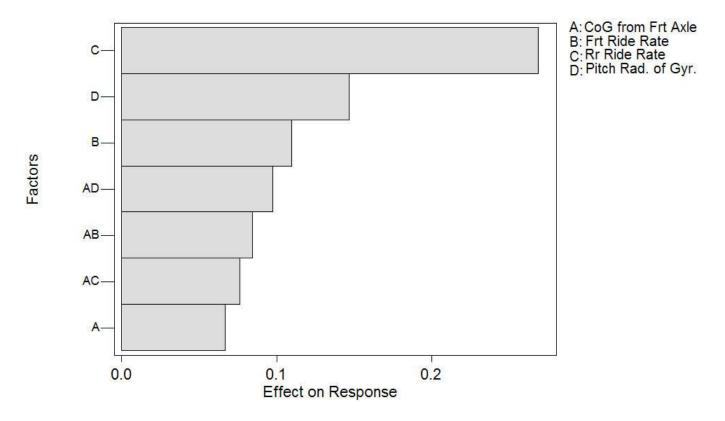


Interpreting the results

We can interpret the results of the DOE by using graphical means.

2 common plot types:

Pareto Chart

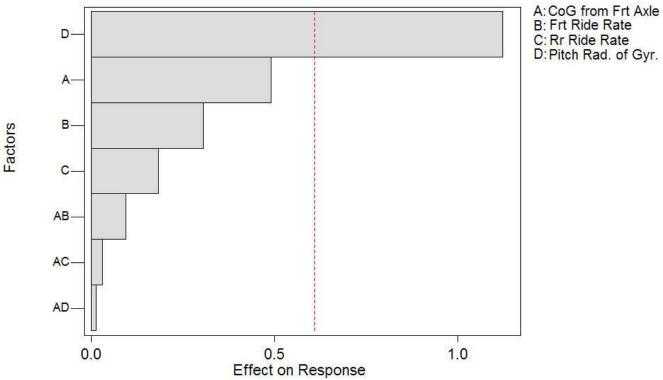

Main Effects Plot

Both can be used to assess the relative strength and direction of factor setting on system response

Pareto chart for bounce natural frequency

Pareto of Main Effects

Response = Bounce Natural Frequency

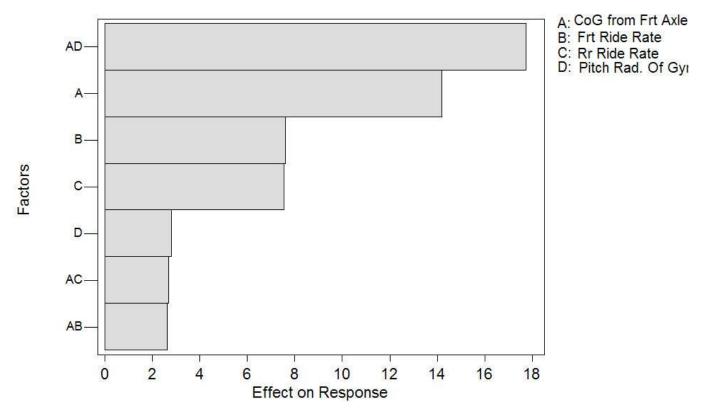


<u>Interpretation</u>: Changing the rear ride rate from 80% to 120% of nominal has biggest effect on bounce natural frequency, changing it by almost 0.3hz

Pareto chart for pitch natural frequency

Pareto of Main Effects

Response = Pitch Natural Frequency

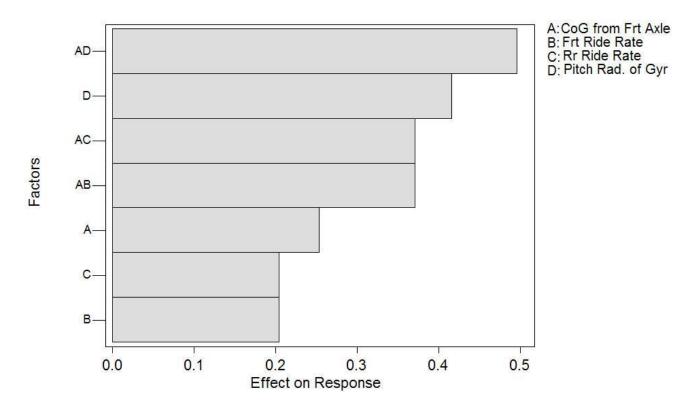


<u>Interpretation</u>: Changing the pitch radius of gyration from 80% to 120% of nominal has the biggest effect on pitch natural frequency, changing it by more than 1 Hz

Pareto chart for bounce node location

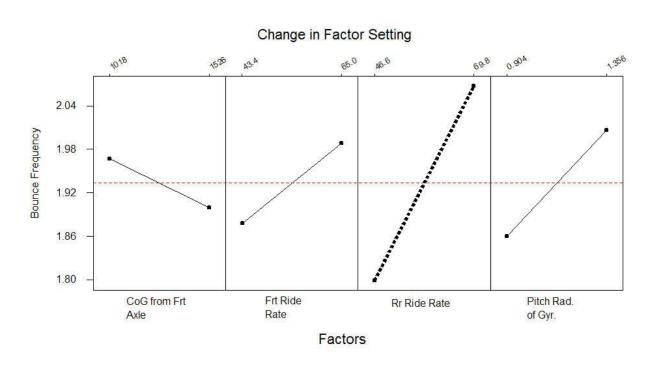
Pareto of Main Effects

Response = Bounce node location



<u>Interpretation</u>: The interaction of CoG location and pitch radius of gyration has the biggest effect on bounce node location, changing it by almost 17m

Pareto chart for pitch node location


Response = Pitch node location

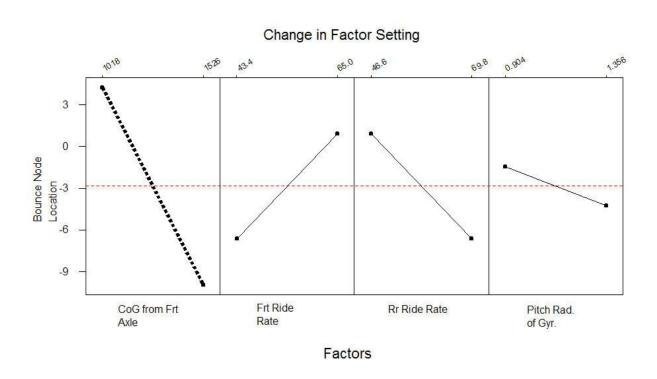
<u>Interpretation</u>: The interaction of CoG location and pitch radius of gyration has the biggest effect on pitch node location, changing it by almost 0.5m

Main effects plot for bounce natural frequency


Main Effects Plot for Bounce Frequency

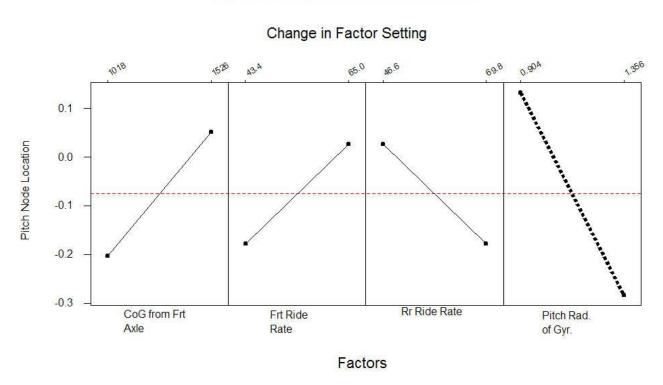
Interpretation: Changing the rear ride rate from 80 to 120% of nominal has the biggest effect on bounce natural frequency and tends to increase the frequency by almost 0.3Hz

Main effects plot for pitch natural frequency


Main Effects Plot for Pitch Frequency

<u>Interpretation</u>: Changing the pitch radius of gyration from 80 to 120% of nominal has the biggest effect on pitch natural frequency, and tends to decrease the frequency by almost 1Hz

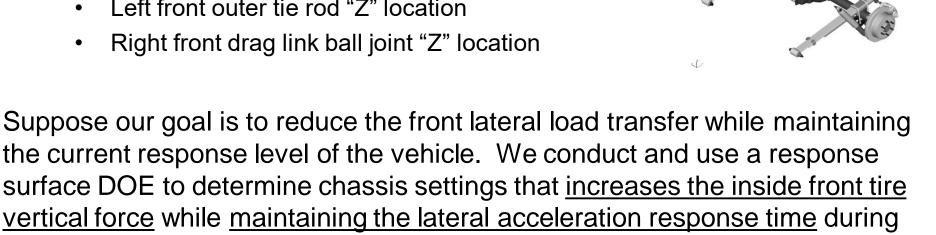
Main effects plot for bounce node location


Main Effects Plot for Bounce Node

<u>Interpretation</u>: Changing the CoG location to front axle from 80 to 120% of nominal has the biggest effect on bounce node location, and tends to move the node rearward more than 12m

Main effects plot for pitch node location

<u>Interpretation</u>: Changing the Radius of Gyration from 80 to 120% of nominal has the biggest effect on pitch node location and tends to move it rearward almost 0.5m


Example – RSM DOE for transient handling

Assume a we ran a prior screening DOE on all the chassis factors that affect handling The results revealed the following parameters had the biggest effect on vehicle response during a step steer test:

- LCA bushing lateral rate
- Front stabilizer bar stiffness
- Front spring rate

a step steer maneuver

- Rear leaf spring first stage rate
- Left front outer tie rod "Z" location
- Right front drag link ball joint "Z" location

Maneuver:

Step steer right turn 0.5g steady state at 55mph

Factors:

- Front LCA bushing lateral rate
- Front stabilizer bar stiffness
- Front spring rate
- Rear leaf spring first stage rate
- Left front outer tie rod "Z" location
- Right front drag link ball joint "Z" location

Assume a "low" setting is 80% of nominal, "high" is 120% of nominal

Response:

- Minimum inside front tire vertical force (N)
- Lateral acceleration response time (sec)

An ADAMS/Chassis model of a full-size truck was used to simulate a step steer manuver

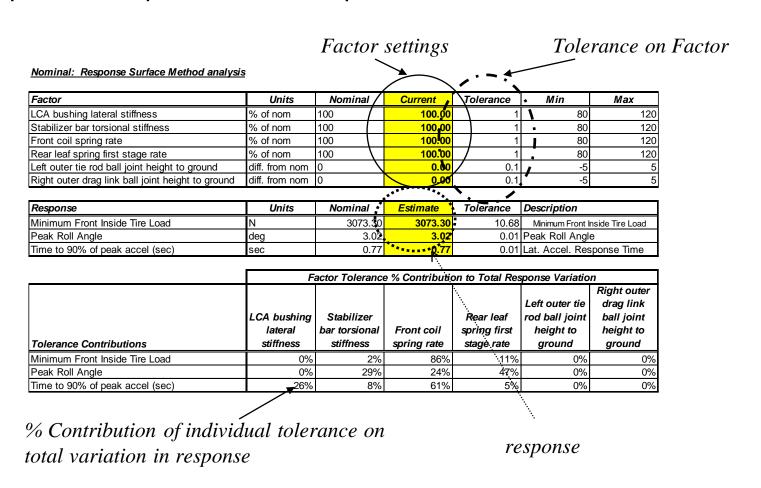
The ADAMS/Insight DOE software package was used to construct, execute and postprocess a Box-Behnken Response Surface DOE

- 6 factors
- 3 levels (low, nominal, high)
- 54 runs

A full-factorial DOE would be $3^6 = 729$ runs! Box and Behnken came up with a design matrix which will give us statistically significant results in much fewer runs

Note: There is no reason why we couldn't have used Minitab for the RSM DOE. I used ADAMS/Insight because it is seamlessly integrated with the ADAMS/Chassis and ADAMS/Car simulation environment.

Box-Behnken DOE Run Matrix


	Factor Level							Factor Values				
Run	LCA bushing lateral stiffness	Stabilizer bar torsional stiffness	Front coil spring rate	Rear leaf spring first stage rate	Left outer tie rod ball joint height to ground	Right outer drag link ball joint height to ground	LCA bushing lateral stiffness (N/mm)	Stabilizer bar torsional stiffness (N-mm/deg)	Front coil spring rate (N/mm)	Rear leaf spring first stage rate (N/mm)	Left outer tie rod ball joint height to ground	Right outer drag link ball joint height to ground
1	-1	-1	0	-1	0	0	4212.80	1432000.00	63.40	29.54		490.02
2	-1	0	0	-1	-1	0	4212.80	1790000.00	63.40	29.54		490.02
3	-1	0	0	-1	1	0	4212.80	1790000.00	63.40	29.54		490.02
4	-1	1	0	-1	0	0	4212.80	2148000.00	63.40	29.54	472.28	490.02
5	0	0	-1	-1	0	-1	5266.00	1790000.00	50.72	29.54	472.28	485.02
6	0	0	-1	-1	0	1	5266.00	1790000.00	50.72	29.54	472.28	495.02
7	0	0	1	-1	0	-1	5266.00	1790000.00	76.08	29.54	472.28	485.02
8	0	0	1	-1	0	1	5266.00	1790000.00	76.08	29.54	472.28	495.02
9	1	-1	0	-1	0	0	6319.20	1432000.00	63.40	29.54	472.28	490.02
42	1	0	1	0	0	1	6319.20	1790000.00	76.08	36.93	472.28	495.02
43	-1	-1	0	1	0	0	4212.80	1432000.00	63.40	44.32	_	490.02
44	-1	0	0	1	-1	0	4212.80	1790000.00	63.40	44.32		490.02
45	-1	0	0	1	1	0	4212.80	1790000.00	63.40	44.32		490.02
46	-1	1	0	1	0	0	4212.80	2148000.00	63.40	44.32		490.02
47	0	0	-1	1	0	-1	5266.00	1790000.00	50.72	44.32	_	485.02
48	0	0	-1	1	0	1	5266.00	1790000.00	50.72	44.32	_	495.02
49	0	0	1	1	0	-1	5266.00	1790000.00	76.08	44.32		485.02
50	0	0	1	1	0	1	5266.00	1790000.00	76.08	44.32	_	495.02
51	1	-1	0	1	0	0	6319.20	1432000.00	63.40	44.32	_	490.02
52	1	0	0	1	-1	0	6319.20	1790000.00	63.40	44.32		490.02
53	1	0	0	1	1	0	6319.20	1790000.00	63.40	44.32		490.02
54	1	1	0	1	0	0	6319.20	2148000.00	63.40	44.32	472.28	490.02

Box-Behnken DOE Run Matrix with Results

			Factor	Level				Response	
Run	LCA bushing lateral stiffness	Stabilizer bar torsional stiffness	Front coil spring rate	Rear leaf spring first stage rate	Left outer tie rod ball joint height to ground	Right outer drag link ball joint height to ground	Minimum Front Inside Tire Load (N)	Peak Roll Angle (deg)	Time to 90% of peak accel (sec)
1	-1	-1	0	-1	0	0	3017.31	3.23	1.00
2	-1	0	0	-1	-1	0	2990.72	3.14	0.88
3	-1	0	0	-1	1	0	2989.39	3.14	0.88
4	-1	1	0	-1	0	0	2963.83	3.05	0.79
5	0	0	-1	-1	0	-1	3227.28	3.22	0.01
6	0	0	-1	-1	0	1	3232.97	3.21	0.01
7	0	0	1	-1	0	-1	2791.39	3.07	0.50
8	0	0	1	-1	0	1	2792.08	3.07	0.50
-					•				
					•				
	•			•					
45		0	0	1	1	0	3149.90	2.92	0.70
46	_	1	0	1	0	0	3106.29	2.88	0.64
47	0	0	-1	1	0	-1	3320.47	3.02	1.70
48		0	-1	1	0	1	3321.27	3.02	1.72
49		0	1	1	0	-1	2939.70	2.91	0.46
50	0	0	1	1	0	1	2940.34	2.91	0.46
51	1	-1	0	1	0	0	3182.71	2.99	0.78
52	1	0	0	1	-1	0	3152.95	2.92	0.72
53	1	0	0	1	1	0	3151.25	2.91	0.72
54	1	1	0	1	0	0	3106.39	2.88	0.66

Interpreting the results

Post-processing the response surface DOE runs in ADAMS/Insight allows us to port the response surface equations to Excel

Interpreting the results

Using the solver function in Excel, find a solution that increases the inside tire load 10% while maintaining the current level of lateral acceleration response time

Factor settings that achieve desired goal

Microsoft Excel 17-2003 Workshee

Optimization: Increase minimum front inside wheel load by 10% while maintaining 0.77s lateral acceleration response time

Factor	Units	Nominal		Current	1	Tolerance	Min	Max
LCA bushing lateral stiffness	% of nom	100		102.13	1	1	80	120
Stabilizer bar torsional stiffness	% of nom	100		80.68		1	80	120
Front coil spring rate	% of nom	100		80.12		1	80	120
Rear leaf spring first stage rate	% of nom	100	V	120.00		1	80	120
Left outer tie rod ball joint height to ground	diff. from nom	0		-4.84	Ζ	0.1	-5	5
Right outer drag link ball joint height to ground	diff. from nom	0		5.00		0.1	-5	5

Response	Units	Nominal	Estimate	Tolerance	Description
Minimum Front Inside Tire Load	N	3073.30	3370.00	9.50	Minimum Front Inside Tire Load
Peak Roll Angle	deg	3.02	3.10	0.01	Peak Roll Angle
Time to 90% of peak accel (sec)	sec	0.77	0.77	0.05	Lat. Accel. Response Time

	Factor Tolerance % Contribution to Total Response Variation									
					Left outer tie	Right outer drag link				
	LCA bushing	Stabilizer		Rear leaf	rod ball joint	ball joint				
	lateral	bar torsional	Front coil	spring first	height to	height to				
Tolerance Contributions	stiffness	stiffness	spring rate	stage rate	ground	ground				
Min_Frt_Ins_Tire_Load	0%	5%	81%	14%	0%	0%				
Peak_Roll_Ang	0%	17%	48%	35%	0%	0%				
Lat_Accel_Resp_Time	44%	34%	0%	22%	0%	0%				

We can do the exact same type of analysis using response equations from a DOE set up and postprocessed in Minitab

Another RSM Example (Time Permitting)

Vehicle Dynamics / NVH Cross Attribute Optimization Using CAE

Tim Drotar
Vehicle Dynamics

- Goal was to find a front and rear suspension bushing tuning that met vehicle dynamics requirements for steady state understeer while minimizing impact harshness and brake roughness seat track vibration
- Two CAE Response Surface Method (RSM) Design of Experiments (DOE) were conducted in parallel:
 - Effect of front and rear suspension bushing stiffness on steady state handling response (Vehicle Dynamics)
 - Effect of front suspension bushing stiffness on seat track response for the brake roughness and impact harshness loadcases (NVH)

- Vehicle Dynamics CAE set up the DOE using ADAMS/Insight
- NVH was given the DOE matrix and asked to run the prescribed bushing combinations in their simulation environment and provide the corresponding vehicle response.
- Vehicle Dynamics CAE post-processed both the handling and brake roughness/impact harshness DOE results in ADAMS/Insight generating:
 - Main effects plots showing the relative magnitude and direction of bushing stiffness change on vehicle response
 - Response surface equations (in Excel) that describe the vehicle response as a function of factor settings
- The response "solver" function in Excel was used find a combination of bushing stiffness that provided target understeer while minimizing seat track response for the brake roughness and impact harshness loadcases

CAE Response Surface DOE to simultaneously study the effect of changing bushing rates on handling and NVH performance

			pe	поппа	ice						
Yellow is current tuning											
Type in new values in Green and see how resp	anaa ahar	2000									
Type in new values in Green and see now resp	onse char	iges									
Forton	11	0		-	N.C		D:				
<u>Factor</u>	<u>Units</u>	Current	Proposed	_		<u>Max</u>	Description	-	.: 66		
Pt 1 Axial/Radial Rate Scale Factor	x baseline	1.0	0.6	0.1	0.5		5 FUCA front				
Pt 2 Axial/Radial Rate Scale Factor	x baseline	1.0	0.6	0.1	0.5		5 FUCA rear l				
Pt 3 Axial/Radial Rate Scale Factor	x baseline		1.5	0.1	0.5	1.5 FLCA front bushing stiffness scale					
Pt 4 Axial/Radial Rate Scale Factor	x baseline	1.0	1.1	0.1	0.5	1.5	5 FLCA rear b	ushing st	iffnss scale	efactor	
Response	Units	Current	Proposed	Tolerance	Description) 1					
Brake Roughness Seat Track F/A	mm/s RSS	35.31	20.00	1.91			A - Target 20	mm/s ma	1X		
Impact Harshness (lower is better)	VDV	1.22	0.75	0.09			Seat Track Ver			et 1.5 max	
Front Suspension Compliance (Understeer Budget)	deg/g	0.54	0.34	0.05			ompliance (LF)
Total Understeer (Understeer Budget)	deg/g	2.95	2.80	0.04			ndersteer Budg				
•						,		,			
	D. 4	Di O		D: 4							
	Pt 1	Pt 2		Pt 4							
	Dynamic	Dynamic	Pt 3	Dynamic							
	Rate	Rate	Dynamic	Rate							
	Scale	Scale	Rate Scale	Scale							
Tolerance Contributions	Factor	Factor	Factor	Factor							
Brake Roughness Seat Track F/A	0%	0%	64%	36%							
Impact Harshness	57%	41%	0%	2%							
Front Suspension Compliance (Understeer Budget)	8%	8%	46%	46%							
Total Understeer (Understeer Budget)	5%	5%	50%	39%							

- Outcome was a proposal for front and rear suspension bushing rates that optimized brake roughness, impact harshness and steady state cornering
- Proposal was verified in physical prototype test and implemented in next round of prototypes

Summary

- DOE is
 - A statistical methodology to evaluate the effect of multiple factors
 - An efficient way to analyze the relative effect of many factors on vehicle response
 - Used to provide direction to the design community on up-front decisions regarding suspension architecture, kinematics and compliances.
 - Used to help resolve any conflicts between attributes that arise in the early stages of design and development.
- There are 3 main types of DOE methods:
 - Classical
 - Taguchi
 - Optimization

Summary

- There are 3 main types of Classical DOE's:
 - Screening
 - Factorial
 - Response Surface Method (RSM)
- There are several commercially available software packages that take the drudgery out of setting up, executing and analyzing a DOE
- A screening DOE is commonly used to
 - Reduce the list of possible factors to those that have the biggest effect on system response
 - Determine the relative strength and direction of factor effect on system response

Summary

- There are 2 graphical methods commonly used to assess the relative strength and direction of factor setting on system response
 - Pareto chart
 - Main effect plots
- The Response Surface Method DOE is used to generate an equation of system response as a function of factor setting
- A response surface equation can be used to find a setup that optimizes vehicle response(s)

Additional Learning

Does this sound interesting and useful? Want to learn more? Consider taking the SAE course "Design of Experiments for Engineers"

On-demand: https://www.sae.org/learn/content/pd530932/

- 10 hours of instruction for \$550/person
- Work at your own pace
- Hands-on exercises using Minitab are part of the training

Virtual instructor-led: https://www.sae.org/learn/content/c0406/

- 16 hours of instruction spread over 4 consecutive days for \$1349/person
- Hands-on exercises using Minitab are part of the training

SAE gives a discount for group registration. On-site training is also available.

Optimization Software

HEEDS <

Discover better designs, faster

HEEDS is a powerful design space exploration and optimization software package that interfaces with all commercial computer-aided design (CAD) and computer-aided engineering (CAE) tools to drive product innovation. HEEDS accelerates the product development process by automating analysis workflows (Process Automation), maximizing the available computational hardware and software resources (Distributed Execution), and efficiently exploring the design space for innovative solutions (Efficient Search), while assessing the new concepts to ensure performance requirements are met (Insight & Discovery).

https://www.plm.automation.siemens.com/global/en/products/simcenter/simcenter-heeds.html

Optimization Software

Master engineering complexity and speed up product development

When you want to get on the fast track to the best design solution while balancing multiple conflicting constraints, modeFRONTIER is the design optimization software you can rely on to reduce complexity, improve efficiency and cut development time.

With modeFRONTIER, you can manage the logical steps of your engineering design process, perform design space exploration and search for the optimal solution efficiently and faster.

https://engineering.esteco.com/modefrontier/